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1 Introduction

Countries differ widely in terms of their fiscal system and inequalities. For instance, the average

mandatory levies in France were 43% of its GDP from 1995 to 2007, while they were around 26%

in the US for the same period. Various factors can explain these international differences. First,

production technologies can be different across countries, as can the distortions generated by

taxation. Second, individual preferences for consumption and leisure, as well as social preferences

regarding redistribution, can differ across countries. Third, even if technology and preferences

are the same, the political system that selects and implements actual policies can differ across

countries, generating outcomes that are observationally equivalent to alternative social preferences.

The goal of this paper is to disentangle these three explanations and to identify the contribution

of social preferences in the design of actual tax systems.

To do so, we present a theory of the aggregation of individual preferences into social preferences,

which can then be estimated using available data. This Bewley-type aggregation theory is based

on four assumptions. First, individuals have their own view of how the planner should care

about the welfare of all people in the society. This corresponds to so-called ethical preferences

(Arrow, 1951; Harsanyi, 1955; or Sen, 1977). To quote Harsanyi (1955), ethical preferences are

indeed defined as an agent choosing “what he prefers only in those possibly rare moments when

he forces a special impartial and impersonal attitude on himself.”1 These ethical preferences are

represented by Individual Welfare Functions (IWFs), which are agent-specific. IWFs are thus

heterogeneous, which is consistent with empirical investigations (Gaertner and Schokkaert, 2012;

Fehr et al., 2013; Stantcheva, 2021 or Alesina and Giuliano, 2011 for a survey of heterogeneity

in ethical preferences). Our second assumption concerns the source of heterogeneity for IWFs:

The IWFs are the outcome of each agent’s life experience. Following the Bewley tradition, we

assume that an agent’s relevant life experience is their economic history. Our construction could

easily manage other dimensions of heterogeneity, but this representation is already sufficiently

rich for us to discuss a wide variety of political implications of our estimation. Third, we assume

that the ethical preferences are of the weighted utilitarism type. Agents value the utility of

others agents by attributing some weights to the latters’ individual utility. This representation

is known to be flexible enough to embed moral and political concerns (including Libertarian,

Egalitarian, or Utilitarian ones) into the planner’s motives (Saez and Stantcheva, 2016, among
1These ethical preferences have a long tradition. They are the preferences of the “impartial spectator” of Adam

Smith (1759) or the preferences under the “Veil of ignorance” of Rawls (1971).
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others). Our fourth assumption is that the Social Welfare Function (SWF) that the planner

uses to design the fiscal policies is the (possibly biased) aggregation of the heterogeneous IWFs.

Indeed, the political power affecting agents’ ability to influence the planners’ decisions can be

heterogeneous. Consistently with the literature on political inequality (e.g., Cagé, 2024 for

a discussion), this could for instance be explained by lobbying powers, participation rates in

elections, or the representation of voters and their representatives. This construction yields an

SWF that is stationary at the steady state, although agents’ ethical preferences can change

with their own history. The SWF can thus be estimated in the data, and can also be related to

the concepts of public finance literature such as the Social Marginal Welfare Weights (SMWW)

and the Marginal Value of Public Funds (MVPF). As a final remark, we do not require the

SWF to fulfill the Pareto principle. Since Sen (1970) or Kaplow and Shavell (2001), it is indeed

known that allowing the planner’s objective to account for moral or political concerns can imply

SWFs that do not fulfill the Pareto principle. We first present a very simple model, where this

construction is transparent.

We then develop a quantitative methodology to estimate SWFs and IWFs from the data.

We apply it to France and the US, which have the advantage of being very different in terms

of taxation and inequality. This methodology extends the standard inverse optimal approach

(see the literature review below) to a general equilibrium heterogeneous-agent model (ï¿½ la

Bewley-Huggett-Aiyagari). We start with showing that a fiscal system, composed of a progressive

labor tax, a capital tax, a consumption tax and public debt, combined with an empirically

relevant income risk, closely reproduces income and wealth inequality in 2007, both in France

and in the US. We chose the period 2007 to exclude the financial crisis and the subsequent

Covid-19 crisis, which led to significant transitory changes in fiscal structures. We then consider

an heterogeneous-agent model, where agents face income risk and where the previous fiscal system

finances a public good. A Ramsey planner sets the fiscal policy to maximize an SWF, which

results from our construction. To solve this intertemporal program in general equilibrium, we use

the truncation method, which has been progressively developed in LeGrand and Ragot (2022a,

2023). We here extend this approach to be able to consider the general disutility of labor, instead

of the GHH case of LeGrand and Ragot (2024). We finally use the first-order conditions (FOCs)

of this Ramsey program to compute the SWF and the IWFs for which the observed allocation

in France and in the US is a Ramsey steady state, which extends the standard inverse optimal

approach to an intertemporal general equilibrium approach. The derivation of the Ramsey FOCs
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offers as a side benefit an intertemporal and general equilibrium expression of the concepts of

SMWW and MVPF.

The estimation of SWFs generates three sets of results. First, the SWFs in France and

in the US are very different. The US SWF weights increase with income and put the largest

weight on high-income agents. The weights for middle-class agents are lower, and low-income

agents have the lowest weight. This shape of the SWF weights is actually consistent with the

decreasing shape of the SMWWs estimated in the literature, as the latter include marginal

utilities, as we explain. Conversely, the French SWF assigns the highest weight to low-income

agents. However, the SWF weights are U-shaped and the weights first decrease with income,

such that the middle-class has the lowest weight, while they then increase for high-income agents.

Maybe not surprisingly, the French SWF is Egalitarian at the bottom of the distribution, but

also puts a high weight on very productive agents. Second, to understand the role of the SWF in

shaping inequality, we simulate the optimal US fiscal system if the US were to adopt the French

SWF, keeping individual preferences constant. We find that the Gini coefficient of wealth would

decrease from 78% to 63%, beyond the French Gini coefficient of wealth of 68%. Consequently,

social preferences are a primary driver of the fiscal system and household inequality. Third, we

decentralize the aggregate SWF into heterogeneous IWFs to assess the heterogeneity of social

preferences in each country. To do so, we first use turnout data in the US and in France to

estimate political weights, following the political economy literature surveyed by Cagé (2024).

We then estimate the set of IWFs that are the closest to the self-interested one and which are

consistent with the SWF. We find that the middle class is mostly Libertarian in the US and

Egalitarian in France, and that there is a substantial heterogeneity in IWFs within countries.

Related literature. Our paper is related to three streams of the literature: heterogeneous-agent

macroeconomics, public finance, and social choice.

First, this paper contributes to the recent literature on optimal policies in heterogeneous-

agent models. Early contributions, such as Aiyagari (1995), analyze general properties about

capital tax in heterogeneous-agent models. Aiyagari and McGrattan (1998) compute the optimal

steady-state level of public debt. Dávila et al. (2012) show that the steady-state capital stock

can be too low, solving for a constrained-efficient allocation. Some papers compute the optimal

path of relevant instruments (Conesa et al., 2009, or Dyrda and Pedroni, 2022, more recently).

Some papers rely on the FOCs of the Ramsey problem to solve for optimal policies considering
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an Utilitarian planner (Bhandari et al., 2021; LeGrand and Ragot, 2022a; Açikgöz et al., 2022;

Dávila and Schaab, 2023; Auclert et al., 2024). We develop the algebra to connect the FOCs

with public finance concepts, and we use the recent developments of the truncation method of

LeGrand and Ragot (2024) to apply the inverse optimal approach.

Second, the paper also contributes to the public finance literature, as it makes explicit the

general equilibrium effects in the MSWW and in the MVPFs (Hendren and Sprung-Keyser, 2020,

or Ferey et al., 2024, for a recent contribution). The inverse optimal approach, which we apply to

a Ramsey program of a heterogeneous-agent model, is a common tool in public finance (Bargain

and Keane, 2010; Bourguignon and Amadeo, 2015; Lockwood and Weinzierl, 2016; Hendren,

2020). Chang et al. (2018) also consider an heterogeneous-agent model to estimate inequality

aversion across countries, but they avoid the computation of a Ramsey program. Heathcote and

Tsujiyama (2021) also estimate the SWF in a static environment, but allow for partial private

insurance. In this literature, our contribution is to implement an inverse optimal approach in

general equilibrium, contributing to fill the gap between macroeconomics and public finance.2

From a public finance perspective, considering heterogeneous-agent models with occasionally-

binding credit constraints allows for the analysis of a realistic fiscal system. Indeed, in LeGrand

and Ragot (2024) we show that in such environments, the optimal capital tax and public debt

are well defined and their optimal levels can be positive, which is not the case in complete-

market environments. As a consequence, these tools can be used in an inverse optimal approach

to identify social preferences. In other words, some equivalence results identified in Correia

et al. (2008) and Correia (2010) do not apply in these environments. We show, however, that

consumption tax and capital tax are redundant tools for the planner. Hence, although we use

consumption tax to reproduce the relevant fiscal system (notably in France), this tool does not

provide independent information. Some papers such as Krusell and Rios-Rull (1999), Benabou

(2002), and Alesina and Angeletos (2005) have studied the equilibrium fiscal system as function

of political economy and inequality. Compared to this literature, heterogeneous-agent models

allow for the identification of a more general SWF, and connect our results to the empirical

public finance literature.

Third and finally, the paper contributes to the literature about SWF in heterogeneous-agent
2Papers in the experimental literature elicits social preferences using the spectator game (where a spectator is

asked to split resources between two unknown agents). For instance, Almås et al. (2020) find that US players are
more Libertarian than Norwegians, who are more Egalitarian. These findings are consistent with our analysis,
which relies on an alternative identification strategy, based on the actual fiscal systems.
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models. There is a vast theoretical literature in the social choice literature about the possible

axiomatizations of SWFs – and the discussion of their motivations and their implications – that

dates back to Arrow (1951), Harsanyi (1955), Sen (1970), and Sen (1977), among many others. An

empirical literature identifies possible relevant restrictions for SWFs from experiments (Gaertner

and Schokkaert, 2012, or Fehr et al., 2013) or from surveys (Stantcheva, 2021). Informed by this

literature, we propose a construction of the SWFs as an aggregation of IWFs, which is flexible

enough to allow for estimation. We consider our construction as a possible micro-foundation

for the weights used to assess optimal policies, such as the Generalized Social Marginal Welfare

Weights introduced by Saez and Stantcheva (2016).

The paper proceeds as follows. In Section 2, we present motivating evidence on the French

and US fiscal system. We provide the basics of our Bewley construction of SWFs in Section 3 in

the context of a simple model. The construction is generalized to an infinite horizon model in

Section 4. Section 5 presents the environment in which we will compute the Ramsey program

and conduct our estimation of SWF weights. Finally, the quantitative investigation is presented

in Section 6, while Section 7 concludes.

2 The fiscal structure in France and in the US

We report key statistics about the French and US fiscal systems. These two countries have the

particularity of being among the OECD countries that differ the most in terms of total taxation.

On the one hand, France features one of the highest mandatory levies, while the US one of the

lowest. This is confirmed in Figure I, which reports tax revenues and government spending on

final goods and services, both as a share of GDP, for the two countries. France and the US

drastically differ with respect to the size of their governments: both government spending and

tax revenues are significantly higher in France than in the US. Moreover, the gap between tax

revenues and government spending is larger in France than in the US. This reflects that the

within-country redistribution – measured as the difference between tax revenues and government

spending – is of larger magnitude in France than in the US.

We now turn to the details of the taxation system within each country. We focus on the

average tax system from 1995 to 2007, before the 2008 crisis and the Covid crisis, which both

were the sources of (so-far) transitory changes in their fiscal systems.3 We will use these values as
3Actually, considering the period from 1995 to 2021, as shown in Figure I, does not change the tax results

significantly. However, for the sake of consistency, we chose to consider a period before macroeconomic shocks.
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FIGURE I
Average of government spending and tax revenues average 1995 to 2021 (as a

share of GDP)

Source: own calculations.

a benchmark for calibrating our stationary equilibrium in the quantitative exercise of Section 6.

For France and the US, we use the results of Trabandt and Uhlig (2011), who provide estimates

for the period 1995-2007. Results for France and the US are gathered in Table I, which also

includes some elements related to inequalities.

TABLE I
Summary of fiscal systems and inequalities in the US and in France

Total taxes τK(%) τL(%) τ c(%) B G Gini before Gini after Gini
(%GDP) (%GDP) redist. redist. wealth

France 40 35 46 18 60 24 0.48 0.28 0.68
United States 26 36 28 5 63 15 0.48 0.40 0.77

Note: Total taxes, public debt B and public spending G in percentage of GDP; tax rates τK , τL and τ c in percent;
Gini indices unitless.

The first column reports the total mandatory levies as a share of GDP for the two countries.

Following the literature, we report the decomposition of these total levies into three components:

capital tax, labor tax, and consumption tax. Since Mendoza et al. (1994), this decomposition is

widely used to compare the tax structure across countries (OECD, Eurostat). These three taxes

are reported in columns 2–4. The second column shows the implicit capital tax, calculated as

tax receipts on capital income divided by the capital stock. The third column provides the same

statistic for the labor tax and is computed as the tax receipts on labor income divided by the
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aggregate labor supply. The fourth column reports the implicit tax on consumption.

We can observe that overall taxes are 50% higher in France than in the US. Although the

capital taxes are very close in both countries, the labor and consumption taxes differ significantly.

The difference in labor tax stems partly from the financing of the French welfare system, which

covers public pensions, unemployment benefits, health care, and family allowances. It mostly

relies on social contributions based on the wage bill, which are considered as labor tax. Regarding

consumption tax, it is much higher in France than in the US, although this high value is

comparable to those in other European countries. Tax revenues are used to finance public

spending, which includes both public consumption and public investment. Public spending, as a

share of GDP (column G), is approximately 60% higher in France than in the US. This difference

is explained partly by larger investments in public infrastructure in France. Despite different

levels of taxation and public spending, the public debt-to-GDP ratio appears to be comparable

in France and in the US at around 60%.

We also report in Table I the evolution of income inequality before and after taxation. We

proxy income inequality using the average Gini index between 1995 and 2007 (included), as

reported in the OECD Income Inequality Database.4 The Gini indices barely vary over the

period, and the picture would not have been different if we had reported the 2007 data only. The

before-tax Gini indices for income are roughly similar in France and in the US. This value for

France stems from the accounting of the (high) public pensions in France, which are counted

as transfers and not as income. Consequently, this contributes to increasing the before-tax

inequalities. However, the after-tax Gini indices are very different in the two countries, which is

a consequence of the high transfers to households in France. While redistribution diminishes the

Gini index for income by less than 10 points in the US, the reduction is twice as large in France

and amounts to 20 points.

The last column reports the Gini index for wealth. The data for France come from the

Household Finance and Consumption Survey (HFCS) for the 2010 wave, which is the closest

wave to our benchmark years. We have checked that the Gini index remains highly similar in the

other waves. The wealth Gini index for the US is taken from the PSID in 2006.5 As is standard,

wealth inequalities in each country are higher than for income. The wealth Gini index in each

country is more than 35 points higher for wealth than for post-tax income. The comparison for
4See https://stats.oecd.org/index.aspx?queryid=66670.
5In the 2007 SCF, the wealth Gini index was found to be 0.78, which is very close to the PSID value.

8

https://stats.oecd.org/index.aspx?queryid=66670


wealth between the US and France yields a result similar to that for post-tax income: the US

value is approximately 10 points higher than the French one. It confirms that inequalities are

more pronounced in the US than in France.

Although the results in Table I consider a linear tax for labor (column τL), the labor income

tax scheme is actually progressive in both France and the US. Comparing the progressivity of

labor income tax across countries is challenging due to the complex tax schedules and deductions

that are specific to each country. One approach to make this comparison tractable is to use

a parametric form for the tax function. We follow the literature (e.g., Benabou, 2002, and

Heathcote et al., 2017) and consider a log-linear functional form for the labor tax:

Tax: T (Ic) = Ic − κI1−τ
c , (1)

Disposable income: D(Ic) = κI1−τ
c , (2)

where Ic is the labor income of the country c, τ the level of progressivity, and κ the average level

of taxation. Notice that the higher the τ , the more progressive the tax system.

We use the Luxembourg Income Study (LIS) database for France and the US in 2005 to

estimate the tax progressivity for labor income. We restrict our attention to the heads of

households and their spouses aged between 25 and 60 who were employed. We define labor

income as the sum of wage income, self-employment income, and private transfers. Using the

estimates of the capital tax from Trabandt and Uhlig (2011), we can deduce from the capital

income the amount of capital income tax. We then subtract from the total income tax amount

(provided by the LIS) the capital tax amount, which allows us to obtain an estimated amount of

the labor income tax. We finally define the disposable income as the labor income minus the

labor income tax amount.

Using these data, we estimate the labor tax progressivity by regressing the log of disposable

income on the log of labor income – which corresponds to the log of equation (2). Table II

reports our estimation results for France and the US: τ̂ is the estimated labor tax progressivity

and SE the associated standard error. France has a much more progressive labor tax than the

US. Our estimate of progressivity for the US is 0.16, which closely aligns with values used in the

literature. Our value is lower than the 0.181 value estimated by Heathcote et al. (2017), as we

focus solely on estimating the progressivity of labor income and do not consider the progressivity

of labor and capital income combined.
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TABLE II
Estimates τ̂ of the progressivity of the labor income tax in the US and in

France for 2005

τ̂ SE Obs. R2

France 0.23 0.0056 5289 0.855
United States 0.16 0.0019 38111 0.942

Estimates τ̂ of the progressivity of the labor income tax in the US and in France for 2005. We regress the log of
equation (2) using the LIS database: SE is the standard error of τ̂ , Obs. is the number of observations, R2 is the
R2 of this regression.

We will use the elements of Table I and the progressivity of labor income estimate in Table

II to calibrate our heterogeneous-agent model below – and in particular the social weights.

3 A Bewley theory of the SWF: Some initial definitions

We discuss our aggregation theory of the SWF in a simple environment that allows us to abstract

from complex algebra and heavy notation. We first explain how we construct individual welfare

functions (IWFs), which are then aggregated to form the social welfare function (SWF) (Sections

3.1 and 3.2). We then present how the SWF and the IWFs can be identified from observed

allocations (Section 3.3). We also introduce public finance concepts and also discuss how they

relate to our identification strategy. Finally, we discuss the possible interpretations of these

estimations in terms of political and social justice concepts, such as the Utilitarian, Egalitarian,

and Libertarian principles (Section 3.4).

3.1 The setup

We consider a one-period one-good economy. The unique good is a final consumption good,

over which agents have preferences. These preferences are represented by a utility function u,

which is assumed to satisfy standard properties: u′ > 0, u′′ < 0, and u′(0) = ∞. We furthermore

assume that u > 0. We need this assumption for the combination of weighted utility functions to

be well-behaved. The economy is populated by two types of agents, whose population size is

normalized to 1. Each type is in equal share 1/2. Agents types only differ along their endowment.

We denote by y1 > y2 the two endowment values.

A benevolent planner has the objective to choose the best allocation subject to a feasibility

constraint. Allocations will be ranked according to a SWF whose construction is detailed below.
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The feasibility constraint reflects the fact that the planner can transfer resources across type

1 and type 2 agents, but with a quadratic redistribution cost. This cost aims at capturing

all distortions generated by distribution and is scaled by a parameter κ > 0. Implementing a

consumption ci for an agent receiving the endowment yi involves a destruction of resources equal

to κ
2 (ci − yi)2. Focusing on the symmetric equilibrium where all agents of the same type i receive

the same consumption ci, the feasibility constraint can be written as:

2∑
i=1

(
ci + κ

2 (ci − yi)2
)

≤
2∑

i=1
yi. (3)

To consider meaningful solutions, we assume that the redistribution cost is not too high and

verifies κyi < 1, which formally guarantees interior solutions.

3.2 Individual and social welfare functions

Our construction of the SWF from individual ethical preferences (IWFs) proceeds in three steps

– which we will replicate in the general case in Section 4: (i) the subjective valuation of each

agent for the welfare of others; (ii) the representation of ethical preferences, which we will call

Individual Welfare Functions (IWFs); (iii) the Social Welfare Function (SWF) representing the

planner’s preferences.

The Individual Welfare Function (IWF). In our static setup, u(ci) is the utility of agent i

for the consumption ci. However, agent i also has their own view of how their welfare and that

of others should be accounted for by the planner. We model this subjective valuation of the

utility of other agents by a loading factor that weights the individual utility. Denoting by ω̃ij

the weight of agent i for agent j, the subjective valuation by agent i of the welfare of agent j is

Ṽij = ω̃iju(cj).6

We then assume that the ethical preferences of agent i are built as the aggregation of

their perception of the welfare of other agents. The IWF of agent i representing their ethical

preferences is thus the weighted sum of subjective valuations by agent i over the two agents’

types: IWFi := 1
2 Ṽi1 + 1

2 Ṽi2, or:

IWFi = 1
2 ω̃i1u(c1) + 1

2 ω̃i2u(c2). (4)

The economy thus features heterogeneity in ethical preferences: there are two types of ethical
6Note that to avoid imposing an implicit normalization, we do not impose ω̃ii = 1. See also below our discussion

about the intensity of preferences.
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preferences, as there are two income levels. The types thus capture the heterogeneity both in

the endowments and in the IWFs. This is in line with empirical studies, which have indeed

shown heterogeneity in ethical preferences and that this heterogeneity was partly driven by social

position. See Gaertner and Schokkaert (2012) and Stantcheva (2021) for a recent analysis based

on large US surveys.

This general case encompasses self-interested agents, who only care about their own welfare.7

The IWF of self-interested agents is proportional to their individual utility: IWFi = λiu(ci) for

some λi > 0. This corresponds to the weights ω̃ij = λi × 1i=j – with 1i=j = 1 if i = j and 0

otherwise.

Two remarks are worth mentioning regarding the generality of the weights (ω̃ij)i,j=1,2

1. Intensity of preferences. We do not impose any weight normalization, neither that they sum

to 1 (
∑

j ω̃ij = 1) nor that ω̃ii = 1. Since we aggregate IWFs together, the IWF weights

have indeed both an ordinal and a cardinal meaning. Their normalization is not innocuous,

as it would remove the possible heterogeneity in the intensity of ethical preferences (using

the wording of Arrow, 1951).

2. Possibility of spitefulness or discrimination. We do not restrict the sign of the weights

(ω̃ij)i,j=1,2, which are allowed to be negative. In this case, the IWF of an individual may be

negatively affected by the utility of other agents: the consumption of some other agents can

be perceived as a negative externality by certain agents. Such externalities on individual

preferences (and not only on ethical preferences as here) have been modeled in asset pricing

or macroeconomics to reflect the idiom that households want “to keep up with the Joneses”

(see Abel, 1990, or Campbell and Cochrane, 1999, among others). Such externalities have

also received support in experimental studies (see Fehr et al., 2013, among others), where

such a behavioral trait has been called spitefulness.8 Negative weights in welfare functions

could also reflect a possible discrimination of some agents’ types (Piacquadio, 2017).

The Social Welfare Function (SWF). Finally, we construct the SWF as the weighted

aggregation of the IWFs. Indeed, following the political economy literature, we assume that

agents may differ in their political ability to influence the planner in their policy implementation.
7We avoid the word “selfish” or “rational” agents, as these are too negatively or positively connoted. Sen (1977)

uses the word self-seeking for the same idea.
8Fehr and Schmidt (2006) describe this behavior as follows: “A spiteful person always values the material

payoff of relevant reference agents negatively. Such a person is, therefore, always willing to decrease the material
payoff of a reference agent at a personal cost to himself.”
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This heterogeneity in the agents’ influence may result from institutional design, lobbying activities,

or voting rules. We capture it by political weights (ωP,i)i, which loads IWFs as a function of the

agent’s type. We will use the political economy literature to estimate these weights. We then

define the SWF as the aggregation of IWFs weighted by political weights:

SWF = ωP,1IWF1 + ωP,2IWF2. (5)

Using the expression (4) of IWFs, we obtain the following expression for the SWF:

SWF = ω1u(c1) + ω2u(c2), (6)

where we have defined the SWF weights as follows, for some ω > 0:

ω1 := ω

2 (ωP,1ω̃11 + ωP,2ω̃21), (7)

ω2 := ω

2 (ωP,1ω̃12 + ωP,2ω̃22). (8)

While the IWFs weights have a cardinal interpretation, this is not the case of the SWF weights.

We can thus without loss of generality choose the constant ω so as to normalize the sum of

weights to 1 (ω1 + ω2 = 1).

Our construction of SWF weights embeds standard cases, such as the Utilitarian SWF.

It corresponds to self-interested agents: ω̃ij = 1i=j , with identical preference intensity. With

constant political loading factors: ωP,i = 1/2, we obtain that the SWF weights are identical

and equal to: ω1 = ω2 = 1
2 – where we have set ω = 2 in (7)–(8) for normalization purposes.

The resulting SWF is Utilitarian.9 Moreover, SWF weights are not restricted to be positive and

the aggregation procedure could be end up with negative SWF weights. In this simple setup,

this implies that the construction does not ensure that the planner chooses only Pareto-optimal

allocations. See also Section 3.4 for a lengthier discussion of these aspects.

3.3 Inverse optimal approach: Identifying the Welfare Functions

The identification of SWF weights. Generally speaking, the inverse optimal approach

consists in identifying social preferences from the observed allocation and available fiscal tools,

with the assumption that the latter are optimally set by the planner. In our setup, the fiscal
9Even with heterogeneous preference intensity, ω̃ij = λi1i=j , with λ1 ̸= λ2, we can recover the Utilitarian SWF.

Political weights must offset the preference intensity: ωP,i = λ−1
i

λ−1
1 +λ−1

2
. We then obtain with ω = λ−1

1 + λ−1
2 that

SWF weights are identical: ω1 = ω2 = 1
2 .
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system allows the planner to directly choose the allocation (c1, c2) that maximizes the aggregate

welfare, represented by the SWF of equation (6), subject to the resource constraint of equation

(3). For a given pair of SWF weights (ω1, ω2), the optimal allocation is characterized by the

following FOC:
ω1u

′(c1)
1 + κ(c1 − y1) = ω2u

′(c2)
1 + κ(c2 − y2) , (9)

together with the constraint (3). Note that the condition κyi < 1 ensures that the FOC is well

defined for all consumption levels.

The intuition for this relationship can be provided using concepts of public finance. To

clarify this link, we rewrite the planner’s program assuming that the planner chooses individual

lump-sum taxes (ti)i. The Lagrangian of the planner can be written as W + µB, where W :=

ω1u(y1 − t1) + ω2u(y2 − t2) is the SWF (6) expressed with taxes, B :=
∑2

i=1(ti − κ
2 t

2
i ) is the

resource constraint (3) as a function of taxes, and µ is the associated Lagrange multiplier. The

FOC associated to the choice of ti can be written as follows:

µ = ∂W
∂ci

×
−∂ci

∂ti

∂B
∂ti

. (10)

This equation states that the planner equalizes the marginal benefit for the planner’s finances

of raising ti to the marginal cost for agent i of financing this marginal resource. The marginal

benefit is simply the Lagrange multiplier of the planner’s resource constraint. The marginal cost

involves two terms.

The first one, −∂ci
∂ti

/
∂B
∂ti

, measures how much the consumption of agent i is affected by the

financing of the planner’s marginal resource by the tax ti. The quantity ∂B
∂ti

= 1 − κti includes

the tax base (equal to 1 here) and the financial externality related to the destruction of resources,

−κti. Since −∂ci
∂ti

= 1, financing the planner’s marginal resource will decrease the consumption of

agents i by −∂ci
∂ti

/
∂B
∂ti

= 1/(1 +κ(ci − yi)). We denote this term MV PFi and call it the marginal

value of public fund following Finkelstein and Hendren (2020) and Hendren and Sprung-Keyser

(2020).

The second term ∂W
∂ci

measures how much social welfare is affected by a variation of the

consumption of agents i. In the absence of the welfare externality of consumption, only the

welfare of agent i is affected, and we have ∂W
∂ci

= ωiu
′(ci). Following the literature (e.g., Ferey

et al., 2024, among many others), we call this term the social marginal welfare weight attributed

by the planner to agents i. We denote it as SMWWi.

Overall, the extra resource of the planner financed by agent i through ti implies a consumption
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cut of MV PFi units for agents i, and a welfare impact equal to SMWWi ×MV PFi. This latter

quantity can thus be interpreted as the bang for the buck of one unit of resources spent by the

planner for agents i – following again the denomination of Finkelstein and Hendren (2020) and

Hendren and Sprung-Keyser (2020).

The interpretation of equation (9) is then rather simple. The planner sets transfers between

the two agents’ types up to the point where the planner equalizes the bangs for the buck of the

two agents: the planner is indifferent between obtaining one extra unit of resources from agents

1 or from agents 2. Should this not hold, the allocation could not be optimal: agents with the

higher bang for buck should receive resources, at the expense of those with the lower bang for

the buck. Furthermore, from (10), the bangs for the buck of the two agents are also equal to the

marginal benefit of relaxing the resource constraint (3). Equation (9) can thus be rewritten as:

SMWW1 ×MV PF1 = SMWW2 ×MV PF2 = µ. (11)

Saez and Stantcheva (2016) have generalized this marginal approach by allowing to consider

social marginal weights that do not derive from an explicit SWF. The weights can adopt general

expressions, such as non-linear effects or dependencies in endogenous variables other than

consumption. These weights are called generalized social marginal welfare weight.10

The inverse optimal approach still relies on the FOC (9), but takes a different perspective.

Instead of deducing the allocation (c1, c2) from the weights (ω1, ω2), the weights are computed

from the allocation. Formally, for a given allocation (c1, c2) satisfying the resource constraint (3),

the FOC (9) can be written as:

ω1
ω2

= u′(c2)
u′(c1)

1 + κ(c1 − y1)
1 + κ(c2 − y2) , (12)

which determines the pair of weights (ω1, ω2) with the normalization constraint. Rather than the

SWF weights ωi, we could also compute from (9) the social marginal welfare weights, ωiu
′(ci).

As we discuss in Section 3.4, focusing on SWF weights is better suited for our analysis, as it

allows us to direct qualify SWF and offer possible interpretations in terms of political and ethical

terms.
10The GSMWW approach allows for including a wide variety of political or moral motives. However, when the

Pareto principle is also imposed, Sher (2024) has shown that the GSMWW approach may generate inconsistencies
in the ranking of fiscal schedules.
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The identification of IWF weights. Most of the analysis in the quantitative model of

Section 6 involves the estimation of the SWF. However, it is also insightful to derive the IWFs

that are consistent with the estimated SWF, because this allows us to understand the underlying

heterogeneity in social perceptions. To do so, we implement the following strategy. First, we

consider measures of the political weights (ωP,i)i of each group, using insights from the political

economy literature. Second, in the absence of individual-level information, we identify the weights

of IWFs as those that are the closest to the self-interested ones, while being consistent with the

estimated SWF weights. See Section 4.4 for a formal presentation.

Other benchmark IWFs could easily be considered, but the self-interested ones appear as

standard in the economic or political economy literature (see Acemoglu, 2010, for various models

of this type). The gain of this strategy is to make explicit the identifying assumptions and to

allow us to derive closed-form expressions for the IWF weights.

3.4 Interpretations of Welfare Functions

Welfare weights are known to offer a possible interpretation in terms of social choice and moral

philosophy, when the allocation is known (Saez and Stantcheva, 2016). We provide below the

definitions that will be used in the quantitative exercise of Section 6.

– Utilitarian. Agents of type i will be said to be Utilitarian if they equally weight all agents:

ω̃i1 = ω̃i2. The Utilitarian planner (ω1 = ω2) will implement the consumption levels c1 > c2

if κ > 0 (recall that y1 > y1). The Utilitarian planner thus accepts some inequality among

agents due to the distributional cost.

– Egalitarian. Egalitarian agents think that economic inequality isn’t justified. Formally, this

implies putting a greater weight on poorer agents: ω̃i1 < ω̃i2. Compared to a Utilitarian

planner, the Egalitarian planner will reduce the consumption of the richest agents (type 1)

and increase the consumption of the poorest agents (type 2). The planner thus reduces

inequality at the cost of a lower total consumption.

– Libertarian. Libertarian agents think that agents deserve what they have. This formally

corresponds to a higher weight on richer agents: ω̃i1 > ω̃i2. The Libertarian planner will

choose an allocation implementing a higher inequality but also a higher total consumption

than the Utilitarian planner. The resulting allocation is thus closer to the initial income

distribution and generates lower distributional costs.
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In a two-type economy, these three cases correspond to a partition of the set of welfare weights.

Each agent type can only be in one of the three above situations. This is also the case for

the planner. Note that even if the agent types belong to different categories, the planner will

belong to exactly one of those categories – depending on the combination of political weights

and preference intensity. However, such a partitioning does not hold with more than two types

of agents. We discuss such cases in the general model of Section 4.

What about Pareto deviations? Our SWF construction is not restricted to Pareto-optimal

SWFs. In our simple setup, non-Pareto optimal allocations correspond to negative SWF weights.

In more general settings, this can happen even with positive SWF weights. This is for instance

the case in a framework featuring individual risk and a Libertarian planner. In that case, an

insurance mechanism could be ex-ante individually optimal for all agents, while not being chosen

by the planner. Indeed, a Libertarian planner would be reluctant to favor redistribution. Thus,

the SWF allocation may not be Pareto optimal, as it could prevent insurance mechanisms. This

is not specific to a Libertarian planner. An Egalitarian planner could choose an allocation that

reduces the inequality so much that it would come at the expense of some agents. Indeed, since

Sen (1970), it is known that the SWF will not necessarily fulfill the Pareto principle if the

planner also cares for other factors (ethical, moral, or political) than the individuals’ utility.

More precisely, Kaplow and Shavell (2001) have shown that the Pareto principle does not hold

when the planner departs from welfarism, i.e., when the SWF does not only include the agents’

utility. There is therefore an incompatibility between the Pareto principle and the generality

of the SWF. One of our paper’s objectives is to propose a rationalization of observed fiscal

systems and discuss the political implications. As a consequence, we will relax the assumption of

welfarism and will not require the Pareto principle to be fulfilled by the estimated SWFs. We

alternatively consider a weaker restriction, which is that the aggregate welfare cannot decrease

when increasing the welfare of any agents. Loosely speaking, this is akin to “everybody counts”.

This means assuming positive SWF weights: ω1, ω2 ⩾ 0 (see Definition 1 in the intertemporal

case).11

11In our simple setup, this weaker restriction is equivalent to the Pareto principle, but this is not the case in
more general setups.
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4 A Bewley theory of the SWF: The intertemporal case

We extend the previous construction of the SWF to a general intertemporal framework, which is

our first contribution. Our approach relies on the sequential representation of the heterogeneous-

agent model, which is the most suitable for our normative analysis.12 We present the construction

of the SWF anticipating the model used in the quantitative section below.

4.1 The setup

We now consider an infinite-horizon model with incomplete financial markets. Time is discrete,

indexed by t ≥ 0. The economy is populated by a continuum of size 1 of ex-ante identical agents.

Risk structure. Idiosyncratic risk is modeled as an uninsurable idiosyncratic labor productivity

shock yt that can take Y distinct values in the finite set Y. The productivity risk follows a

first-order Markov chain with transition matrix (Πyy′)y,y′∈Y . This matrix is assumed to be

irreducible and aperiodic, which ensures that it admits a unique stationary distribution denoted

as (πy)y∈Y , normalized such that
∑

y∈Y πy = 1. We denote by yt = {. . . , yt
t−1, y

t
t} a one-sided

infinite sequence of elements of Y, corresponding to a history of productivity levels up to date

t. We denote the set of such histories by Y∞. Since we will need to consider the evolution of

histories from one period to another, we keep time subscripts for histories. To keep notation

simple, we will use for a history yt ∈ Y∞, the following notation: (i) yt
τ ∈ Y is the productivity

level at date τ ≤ t in history yt; (ii) ys,t is the truncation of yt at date s ≤ t – such that yt

and ys,t coincide up to s: ys,t
τ = yt

τ for all τ ≤ s. We will use a decorator to clearly distinguish

possible different histories: ỹt and yt can be different at any date.

Initial distribution. To simplify the notation below, we make two assumptions about the

initial distribution: (i) all agents start the economy with an initial infinitely-long history belonging

to Y∞; (ii) agents are initially endowed with a wealth that is only a function of their history. The

assumption about wealth encompasses, among others, the case where all agents have the same

wealth or the steady-state wealth. Since we focus on steady-state distributions, in particular of

wealth, this simplification is at no cost in our environment.
12Some analyses (e.g., Chang et al., 2018) have considered social weights depending on endogenous variables,

such as consumption or wealth. This is a possible source of inconsistencies and multiple equilibria. Indeed, the
planner should in that case consider how the social weights change with the allocation.
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The sequential representation. There is a mathematical subtlety in infinite-horizon models,

as the set of histories has the cardinality of the continuum (it is neither finite nor countable).

This explains why the probability space over the set of histories involves a general measure. We

thus construct a probability space over the set of all histories denoted by (Y∞,F , µ), where F is

a relevant σ-algebra and µ is a measure (see Appendix A.1). In words, for any set of histories

B ∈ F , µ(B) ≥ 0 is the measure of agents currently experiencing a history yt ∈ B.13 As the

population size of agents is normalized to 1, we furthermore have
´

yt∈Y∞ µ(dyt) = 1.14

We also need to define transitions across histories. Consider two histories yt+1, ỹt ∈ Y∞.

The probability to switch from history ỹt in the current period to another history yt+1 in the

next period is simply the probability to switch from state ỹt
t to state yt+1

t+1 if yt,t+1 and ỹt are

equal and 0 otherwise. We denote this conditional probability µ1(·|ỹt), formally defined as:

µ1(dyt+1|ỹt) = Πỹt
tyt+1

t+1
δỹt(dyt,t+1), where δỹt is the Dirac delta function in ỹt.15

We then define by induction the probability to switch from history ỹt to another history

yt+s s periods ahead as: µs(dyt+s|ỹt) = Πyt+s
t+s−1yt+s

t+s
µt−1(dyt+s−1,t+s|ỹt), or: µs(dyt+s|ỹt) =∏s−1

k=0 Πyt+s
t+k

yt+s
t+k+1

× δỹt(dyt,t+s). In words, switching from ỹt to yt+s imposes that the two

histories coincide up to period t and then involves the cumulative probability to successively

experience the states from yt+s
t+1 to yt+s

t+s.

Individual intertemporal welfare. For a given allocation, we denote by U(yt) the period

utility of an agent having history yt. To lighten notation, we choose not to make the dependence

in the allocation explicit. For instance, in the case of a utility depending on private consumption,

and labor supply (as in our quantitative application), U(yt) := u(c(yt)) − v(l(yt)), where:

c : Y∞ → R+ and l : Y∞ → R+ are policy functions determining consumption and labor as a

function of individual history. We still assume that U is always positive, which ensures, as in the

simple case, that the combination of weighted utility functions is well-behaved.

The intertemporal welfare in period t of an agent with history yt is assumed to be separable

in time and of the expected-utility type. It is thus defined as the discounted sum over all future
13A history is an event of measure zero in F . Therefore, every equality that holds for all history yt should be

understood as almost surely holding.
14In finite time, we would write

∑
yt∈Yt µt(yt) instead of

´
yt∈Y∞ µ(dyt). All intuitions of the finite-time

representation are valid.
15The function µ1 is a measure and verifies the standard properties of a conditional probability: µ1 ≥ 0,´

yt+1∈Y∞ µ1(dyt+1|ỹt) = 1 and
´

ỹt∈Y∞ µ1(dyt+1|ỹt)µ(dỹt) = µ(dyt+1). See the proofs in Appendix A.2.
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dates of expected period utilities. Formally, the intertemporal utility V (yt) is:

V (yt) =
∞∑

s=0
βs

ˆ
ỹt+s∈Y∞

U(ỹt+s)µs(dỹt+s|yt). (13)

As we consider a steady-state allocation, the intertemporal welfare can be written recursively as:

V (yt) = U(yt) + βEỹt+1

[
V (ỹt+1)|yt

]
, (14)

where Eỹt+1
[
V (ỹt+1)|yt

]
=
´

ỹt+1∈Y∞ V (ỹt+1)µ1(dỹt+1|yt) is a conditional expectation. See Ap-

pendix A.3 for a proof.

4.2 Constructing the SWF

We extend the SWF construction of Section 3 to the current intertemporal framework. As

previously, our construction involves three steps. The first step is slightly different than in the

simple case. In the simple framework, agents of type i had their own subjective valuation of

how the utility of agents of type j should be valued by the planner. Since histories are the sole

source of heterogeneity among agents, the perception of others’ situations thus relies on the

perception of other histories. This results in a subjective valuation by agents yt of the utility of

other agents with history ỹt. The second and third steps are more similar to their counterpart

in the simple model. The second step is to aggregate the perception of other histories over the

entire distribution µ of histories, which yields the Individual Welfare Function (IWF) of agents

with history yt. The third and final step is to construct the Social Welfare Function (SWF) as

the weighted sum of individual IWFs over all histories yt. We now present this aggregation more

formally.

Step 1: Constructing the subjective valuation of the utility of another agent. We

consider two groups of agents characterized by their histories yt ∈ Y∞ and ỹt ∈ Y∞ at some date

t; the allocation is still considered as given. Given our previous assumption about individual

preferences, the tilde agents value in s ≥ 0 periods the allocation of any history ŷt+s as U(ŷt+s)

(whether ŷt+s is a possible successor of ỹt or not). However, the non-tilde agents may possibly

have a different perception of how the allocation history ŷt+s should be valued. Non-tilde agents

assign to the utility U(ŷt+s) of the tilde agents a corrective factor, denoted by ω̂(yt, ŷt+s), such

that ω̂(yt, ŷt+s)U(ŷt+s) corresponds to the valuation of history ŷt+s by the non-tilde agents.

Summing the discounted valuations ω̂(yt, ŷt+s)U(ŷt+s) over all future periods and all future
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histories – with the proper conditional probabilities – yields the valuation of the utility of the

tilde agents by the non-tilde agents. Denoting by V̂ (yt, ỹt) this subjective valuation, we obtain:

V̂ (yt, ỹt) =
∞∑

s=0

ˆ
ŷt+s∈Y∞

βsω̂(yt, ŷt+s)U(ŷt+s)µs(dŷt+s|ỹt), (15)

which is a direct modification of the utility V (ỹt) with the inclusion of the weights ω̂(yt, ŷt+s).

Step 2: Constructing the Individual Welfare Function (IWF). The IWF of the agents

with history yt is then constructed as the aggregation of their subjective valuation V̂ (yt, ỹt) over

possible histories ỹt. Formally:

IWF (yt) =
ˆ

ỹt∈Y∞
V̂ (yt, ỹt)µ(dỹt). (16)

The IWF is a representation of the ethical preferences of agents with history yt. It represents

how the agents yt think the welfare of all other agents should be accounted for by the planner.

As in the simple model, we do not impose any weight normalization at this stage.

Step 3: Aggregating IWFs to obtain the Social Welfare Function. We assume that the

planner observes the IWFs in the population and aggregates them all depending on the weights

assigned to each agent. Not all agents have the same importance for the planner, and they differ

along what we call their political weights – as in the simple model. Formally, the IWF of agents

with history yt will be assigned by the planner the weight ωP (yt). This weight is a shortcut for

the importance of agents with history yt in the political process and hence in their ability to

have their own IWF accounted for by the planner. Formally:

SWF =
ˆ

yt∈Y∞
ωP (yt)IWF (yt)µ(dyt). (17)

Special cases. To illustrate our construction, we now consider special cases.

The first case is when agents identically value other histories. Formally, the weights of agent

yt are the same for all histories ŷt+s: ω̂(yt) := ω̂(yt, ŷt+s), with a slight abuse of notation. In that

case, the ethical preferences can be shown to be represented by an IWF that is proportional to

the Utilitarian SWF: IWF (yt) = ω̂(yt)
´

ỹt∈Y∞ V (ỹt)µ(dỹt). All agents have the same weights in

the agents’ ethical preferences. Consequently, there is no disagreement in the population for the

ordering of allocation. The SWF reflects this absence of disagreement and is also proportional to

the Utilitarian SWF: SWF =
(´

ỹt∈Y∞ ωP (ỹt)ω̂(ỹt)µ(dỹt)
) ´

yt∈Y∞ V (yt)µ(dyt).16

16This property is known at least since Aiyagari (1995) to justify the use of the Utilitarian SWF under the veil
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Second, we consider the so-called self-interested agents, who only care about the histories

they can possibly experience. Formally, the weights of an agent with history yt will be zero

for histories that are not possible continuations of yt: ω̂(yt, ŷt+s) := δyt(ŷt,t+s)ω̂(yt), with a

slight abuse of notation again. In that case, the ethical preferences of agents with history yt are

identical to their individual preferences, and their IWF is proportional to their intertemporal

utility: IWF (yt) = ω̂(yt)V (yt). This illustrates that these agents only care about themselves,

which justifies our denomination of “self-interested”. In that case, the SWF is equal to a weighted

sum of individual intertemporal utilities: SWF =
´

yt∈Y∞ ωP (yt)ω̂(yt)V (yt)µ(dyt), which is a

weighted additive SWF. It reduces to a Utilitarian SWF when the weight product ωP (·)ω̂(·) is

constant.

4.3 Properties of the SWF

An explicit expression of the SWF. We state the following proposition.

Proposition 1 The SWF (17) admits the following expression:

SWF =
∞∑

t=0

ˆ
yt∈Y∞

βtω(yt)U(yt)µ(dyt), (18)

where the weights ω are given by:

ω(yt+s) =
ˆ

ỹt∈Y∞
ωP (ỹt)ω̂(ỹt, yt+s)µ(dỹt). (19)

The proof can be found in Appendix A.4. Proposition 1 provides a simple expression for

the SWF. It states that we can find period weights ω depending on the current history such

that the SWF expresses as the discounted sum over all dates and histories of the utility of that

date and history, weighted by the factor ω. In other words, this twists the standard Utilitarian

SWF by weighting period utilities by a factor depending on the period history – the Utilitarian

SWF corresponding to a constant ω. The SWF weight ω(yt+s) in (19) can be interpreted as the

“average” weight given to history yt+s by all agents in the economy, where agents are weighted

by their political leverage ωP .

The sequential representation (18) of the SWF can also be written as a recursive representation:

SWF =
´

yt∈Y∞ ω(yt)U(yt)µ(dyt) +β ·SWF , which can be seen as the extension of the recursive

representation of the Utilitarian SWF to history-dependent weights. This recursive representation

is very simple because of our stationarity assumption. When considering the whole dynamics

of ignorance.
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of the economy, the utility Ut is time-dependent (because of time-dependent allocation). The

SWF representation is then: SWFt =
´

yt∈Y∞ ω(yt)Ut(yt)µ(dyt) + β · SWFt+1. We use the latter

representation when solving the Ramsey program.17

Weight restriction. As discussed in the simple framework, we do not restrict the SWF to

satisfy the Pareto principle. We do, however, impose a weaker restriction. To formally express

this restriction, we need to make the dependence in the allocation explicit. We now denote the

period utility U : Y∞ × A → R and the SWF: SWF : A → R, where A is the set of allocations.

The period utility for a history yt and an allocation A will be denoted by U(yt, A). For instance,

in the case of our quantitative application, we denote U(yt, A) := u(c(yt)) − v(l(yt)), where A is

the pair of policy functions (c, l). We can state our result using this notation.

Definition 1 A SWF SWF : A → R, associated with a period utility U : Y∞ × A → R, is said

to be element-wise monotone if for any two allocations A and A′ such that U(yt, A) ≥ U(yt, A′)

for all yt, we have SWF (A) ≥ SWF (A′).

This definition states that with a monotone SWF, if in every period one allocation is better

(in the sense of the period utility) than another one, the former will always be preferred, in the

sense of the SWF, to the latter. This property is similar to element-wise monotonicity for utility

functions. Obviously, this is weaker than the Pareto principle, which would require A to be

preferred to A′ in the sense of the intertemporal utility, and not only of period utility.18

Proposition 2 A SWF fulfills element-wise monotonicity iff the weights ω defined in (19) are

non-negative.

The proof can be found in Appendix A.5. Our quantitative estimations may impose the

positivity of weights, which corresponds to an element-wise monotone SWF. This means that

the SWF cannot increase if the welfare of one agent is reduced: everybody (positively) counts.

4.4 Identification of the weights

The SWF expression in Proposition 1 is very general and does not easily lend itself to estimation.

We thus introduce a tractability assumption that allows us to compute the weights in the SWF and
17Our SWF still allows one to perform welfare decomposition, as in Dávila and Schaab (2024).
18This explains why the planner may choose not to implement an insurance mechanism, even if this mechanism

is individually desirable. Indeed, the mechanism implies higher utility in some states (typically the “bad” ones)
and lower utility in others (typically the “good” ones). This does not verify our element-wise monotonicity of
Definition 1.
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the IWFs. We assume that agents with the same current productivity level all value identically

future histories and that this valuation actually depends only on the current productivity level

of the history under consideration.19 We make a similar assumption for political weights that

are also supposed to depend only on the current productivity level. More formally:

Assumption A There exist two functions, denoted with a slight abuse of notation ω̃ : Y ×Y → R

and a function ωP : Y → R such that for all histories yt, ỹt+s ∈ Y∞, we have:
ω̃(yt, ỹt+s) := ω̂yt

t ,ỹt+s
t+s
,

ωP (yt) := ωP,yt
t
,

where we recall that yt
t is the current productivity level in history yt.

Assumption A reduces the dimensionality of loading factors, which are now defined on

finite sets. Weights can now be interpreted as loading factors on productivity levels. To avoid

heavy notation, we keep the same notation but use subscripts to denote the dependence in

productivity level. The weights ω of equation (19) can also now be shown to verify for all y ∈ Y :

ωy =
∑

ỹ∈Y πỹωP,ỹω̃ỹ,y, where πỹ is recalled to be the share of agents with productivity ỹ.

The identification of the weights proceeds in two steps: (i) the SWF weights (ωy)y∈Y from

the data; and (ii) the IWF weights (ωỹy)y,ỹ∈Y from the SWF weights and the data. Without loss

of generality, we now impose for the identification a normalization constraint of the weights that

are assumed to sum to 1:
∑

y πyωy = 1.

The SWF weights. Our identification strategy for the SWF weights consists in finding the

weights for which a given fiscal system (typically the observed one) can be seen as the outcome

of a Ramsey program. Formally, the FOCs of the Ramsey planner imply some linear constraints

for the SWF weights (ωy)y∈Y . The number of constraints, n, depends on the number of the

planner’s instruments. In the general case, the system of constraints (the n linear ones and the

normalization) is weakly underdetermined, which means that the number of productivity states

|Y| is greater than the number of constraints, |Y| ≥ n+ 1 (for any set X, |X| is the cardinality

of X).20 There are thus p = |Y| − n− 1 degrees of freedom.
19We have also extended the representation to allow the SWF weights to depend on the recent history of agents

rather than solely on their last productivity level. The estimated results for the SWF are very similar, showing that
current productivity is almost a sufficient statistic. For this reason, we directly consider the restriction that the
SWF weights depend only on the current productivity level. The results of the extended estimation are reported
in Appendix F.

20Typically, in the quantitative exercise, there are 10 idiosyncratic states and 4 instruments of the planner.
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Our solution to handle the underdetermination is to follow Heathcote and Tsujiyama (2021)

and to assume that the weights are a parametric function of y, with exactly n+ 1 parameters.

With mild assumptions on the functional forms, the weights are exactly and uniquely identified, as

the solution of the non-linear system of constraints. We summarize it in the following definition.

Definition 2 We consider as given a set of 1 ≤ n ≤ |Y| − 1 linear constraints represented by the

matrix (Lk,y)k=1,...,n,y∈Y and a set of parametric functions fy : Rn+1 → R (y ∈ Y) characterizing

the weights. The estimated SWF weights are characterized by the vector (ωy)y∈Y = (fy(θ))y,

where θ ∈ Rp solves the following system:

0 =
∑
y∈Y

Lk,yfy(θ) for all k = 1, . . . , n, (20)

1 =
∑
y∈Y

πyfy(θ). (21)

As a robustness check, we also consider a non-parametric estimation of the weights. In this

case, the system (20)–(21) is underdetermined and the weights are chosen as the solution of

(20)–(21) with the lowest variance across productivity levels. Both solutions imply weights that

are quantitatively very similar, which we see as positive for the identification strategy. See

Appendix F for definitions and results in the non-parametric case.

The IWF weights. The identification of the IWF weights is of higher dimensionality and

requires to compute the |Y|×|Y| parameters ω̂ỹy. As explained in Section 3.3 for the simple setup,

we choose the weights ω̃ that are the closest to the self-interested ones, while being consistent

with the SWF weights. The following definition formalizes it.

Definition 3 We consider as given SWF weights (ωy)y and policy weights (ωP,y)y. The estimated

IWF weights are given by the matrix (ω̃ỹy)ỹ,y that solves the following program:

(ω̃ỹy)ỹ,y =argmin(ω̂ỹy)ỹ,y

∑
(y,ỹ)∈Y∞2

πỹ

(
ω̂ỹy − 1y=ỹ

ωP,yπy

)2

,

s.t. ωy =
∑

ỹ∈Y∞
πỹωP,ỹω̂ỹy.

The solution to this program is for (y, ỹ) ∈ Y∞2:

ω̂ỹy = 1y=ỹ

ωP,yπy
+ ωP,ỹ∑

ỹ∈Y∞ πỹ(ωP,ỹ)2 (ωy − 1). (22)

The proof for the derivation of the weight expression can be found in Appendix A.6. The

IWF weights in equation (22) are quite straightforward to interpret. They are separable into
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two terms, which are the self-interested weights and the distance of the SWF weights to the

Utilitarian ones, weighted by a factor proportional to the political weight ωP,ỹ. Formally:

ω̃ỹy = 1y=ỹ

ωP,yπy︸ ︷︷ ︸
=self-seeking weights

+ ωP,ỹ∑
ỹ∈Y∞ πỹ(ωP,ỹ)2 × (ωy − 1).︸ ︷︷ ︸

=distance to utilitarian SWF

(23)

This simple decomposition mostly comes from choosing ( 1y=ỹ

ωP,yπy
)y,ỹ for the benchmark weights

to which the distance should be computed. Indeed, it implies that the IWF weights reduce to

self-interested ones (ω̃ỹy = 0 if y ̸= ỹ) for Utilitarian SWF weights (wy = 1 for all y). It can be

shown that they are the only benchmark for which this property holds.

To push the interpretation further, we consider the quantity πỹωP,ỹω̂ỹy, which is the measure

of how much the perception of agents ỹ contributes to the SWF weight ωy of agent y. We have:

πỹωP,ỹω̂ỹy = 1y=ỹ + πỹ(ωP,ỹ)2∑
ỹ∈Y∞ πỹ(ωP,ỹ)2 (ωy − 1). This includes a visible self-interested component:

1y=ỹ, showing that along this dimension, the perception of agents ỹ of the SWF matter only when

they perceive themselves. The second component can be perceived as an altruistic dimension

when it is positive, or a spiteful component when it is negative. All agents ỹ will perceive agents

y proportionally to the distance of the SWF weights of these agents to Utilitarian ones. The

loading factor put by agents ỹ is proportional to πỹ(ωP,ỹ)2, which is increasing in the population

share and political weights of agents ỹ.

5 The general model and the Ramsey program

We now construct the macroeconomic model, allowing for estimation of the SWF and IWFs. We

consider a mass 1 of ex-ante identical agents that is affected by a productivity risk denoted by y

– the risk structure is the same as in Section 4. We further assume two goods in the economy: a

final consumption good, whose consumption is denoted by c, and labor, whose supply is denoted

by l. The rest of the specification involves: the planner’s fiscal structure in Section 5.1 and

the households’ program and the competitive equilibrium in Section 5.2. The corresponding

Ramsey program and its FOCs are described in Section 5.3. We finally discuss the identification

of weights in Section 5.5.

5.1 Production and government

Production. In any period t, a production technology with constant returns to scale transforms

capital Kt−1 and labor Lt into F (Kt−1, Lt, ) units of output. The production function is smooth
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in K and L, satisfies the standard Inada conditions, and exhibits constant-to-scale returns. This

formulation allows for capital depreciation, which is subsumed by the production function F .

Labor Lt is the total labor supply measured in efficient units. The good is produced by a unique

profit-maximizing representative firm. We denote by w̃t the real before-tax wage rate in period t

and by r̃t the real before-tax rental rate of capital in period t. Profit maximization yields in each

period t ≥ 1:

r̃t = FK(Kt−1, Lt) and w̃t = FL(Kt−1, Lt). (24)

Government. A benevolent government must finance a path of public spending, (Gt), using

several instruments. First, the government can levy one-period public debt Bt, assumed to be

default-free. As there is no aggregate risk, public debt and capital are perfectly substitutable

and they payoff the same pre-tax interest rate r̃t. Second, the government can raise a number of

distortionary taxes, which concern consumption, labor income, and capital revenues. Consumption

and capital taxes are linear and are denoted by τ c
t , and τK

t at date t. Regarding the tax on labor

income, note that the pre-tax labor income of an agent with productivity y and labor supply l

is w̃yl. The associated labor income tax, denoted by Tt(w̃yl), is assumed to be non-linear and

possibly time-varying, as in Heathcote et al. (2017) (henceforth, HSV):

Tt(w̃yl) := w̃yl − κt(w̃yl)1−τt , (25)

where κ captures the level of labor taxation and τ the progressivity. Both parameters will be

planner’s instruments. When τt = 0, labor tax is linear with a rate 1 − κt. Oppositely, the case

τt = 1 corresponds to full income redistribution, where all agents earn the same post-tax income

κt. Functional form (25), combined with a linear capital tax, allows one to realistically reproduce

the actual US system and its progressivity.21

These three taxes imply a total governmental revenue equal to τ c
t Ct +

´
i Tt(w̃tyi,tli,t)ℓ(di) +

τK
t r̃t(Kt−1 + Bt−1), where Ct is the aggregate consumption, and At−1 := Kt−1 + Bt−1 is the

aggregate savings in period t− 1 and r̃tAt−1 the capital revenues in period t.

With these elements, the governmental budget constraint can be written as follows:

G+ (1 + r̃t)Bt−1 = τ c
t Ct +

ˆ
i
Tt(w̃tyi,tli,t)ℓ(di) + τK

t r̃tAt−1 +Bt. (26)

21The literature uses either the combination of a linear tax and a lump-sum transfer (e.g., Dyrda and Pedroni,
2022; Açikgöz et al., 2022) or the HSV structure (see Ferriere and Navarro, 2023). Heathcote and Tsujiyama (2021)
show that the HSV structure is quantitatively more relevant.

27



We define the post-tax rates rt and wt as follows:

rt := (1 − τK
t )r̃t, wt := κt(w̃t)1−τt . (27)

Using the property of a constant return-to-scale for F and the definition of post-tax rates (27),

the governmental budget constraint can be written as:

G+ (1 + rt)Bt−1 + wt

ˆ
i
(yi,tli,t)1−τtℓ(di) + rtKt−1 = τ c

t Ct + F (Kt−1, Lt) +Bt. (28)

5.2 Households program

Period utility. We specify the period utility function U of agents. It is defined over private

consumption c and labor supply l, and is assumed to be separable. Formally:

U(c, l) := u(c) − v(l). (29)

The function u : R+ → R is twice continuously differentiable, strictly increasing, and strictly

concave, with u′(0) = ∞, while v : R+ → R is twice continuously differentiable, strictly increasing,

and strictly convex, with v′(0) = 0.22

Agents’ program. Agents’ resources consist of labor income and savings payoffs. The post-

tax labor income of an agent with productivity yi,t and supplying labor effort li,t amounts

to w̃tyi,tli,t − Tt(w̃tyi,tli,t) = wt(yi,tli,t)1−τt . Since public debt and capital shares are perfect

substitutes, savings payoffs are equal to (1 + rt)ai,t−1, where ai,t−1 is the end-of-period-t − 1

saving of agent i. Agents use these resources to save and to consume. Formally:

max
{ci,t,li,t,ai,t}∞

t=0

E0

∞∑
t=0

βt (u(ci,t) − v(li,t)) , (30)

(1 + τ c
t )ci,t + ai,t ≤ wt(yi,tli,t)1−τt + (1 + rt)ai,t−1, (31)

ai,t ≥ −a, ci,t > 0, li,t > 0, (32)

where E0 is an expectation operator (with respect to idiosyncratic risk), and where the initial

state (yi,0, ai,−1) is given.

At date 0, agents decide their consumption (ci,t)t≥0, their labor supply (li,t)t≥0, and their

saving plans (ai,t)t≥0 that maximize their intertemporal utility of equation (30), subject to a
22Without loss of generality, we can assume that U is positive for all choices actually made by agents. We can

indeed shift u or v by a harmless constant. Note that this constant has no effect on our estimation of the SWF, as
the strategy of Definition 2 only involves Ramsey FOCs: marginal utilities matter, but utilities in level do not.
See the algorithm described in Section 5.6.
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budget constraint (31) and a previous borrowing limit (32), while prices are assumed to be

exogenous. These decisions are functions of the initial endowment ai,−1 and the history of

idiosyncratic shocks yt
i . However, to simplify notation, instead of writing the agents’ optimal

decision as a function of these variables (as was done in Section 4), we simply denote it with the

subscripts i and t. For instance, for a generic variable X, instead of using the dependence in the

history yt
i , we simply write it Xi,t. Similarly, instead of summing over all histories in period t,

we simply sum over all agents in a given period:
´

iXi,tℓ(di), where ℓ is the distribution of agents

on the population interval J .

The FOCs associated with the agents’ program (30)–(32) can be written as follows:

u′(ci,t) = βEt

[
(1 + rt+1) 1 + τ c

t

1 + τ c
t+1

u′(ci,t+1)
]

+ νi,t, (33)

v′(li,t) = 1 − τt

1 + τ c
t

wtyi,t(yi,tli,t)−τtu′(ci,t), (34)

where the quantity βtνi,t denotes the Lagrange multiplier on agent i’s credit constraint at t.

Market clearing and resources constraints. The clearing conditions for capital and labor

markets can be written as follows:
ˆ

i
ai,tℓ(di) = At = Bt +Kt,

ˆ
i
yi,tli,tℓ (di) = Lt. (35)

Equilibrium definition. We provide a formal definition in Appendix B. Intuitively, for a given

fiscal policy (τ c
t , τ

K
t , τt, κt, Bt)t, the competitive equilibrium is a collection of individual decisions

(ci,t, li,t, ai,t, νi,t)t,i, of aggregate quantities (Kt, Lt, Yt)t, and of prices (wt, rt, w̃t, r̃t)t that are

consistent with: (i) the agents’ optimization program (30)–(32), (ii) the clearing equation (35) of

financial and labor markets, and (iii) the definition of pre- and post-tax factor prices (24) and

(27). The competitive equilibrium is at the steady state when all quantities are time-invariant.

5.3 The Ramsey problem and the identification of weights

We follow the construction of Proposition 1 for the SWF. We also require Assumption A to hold

for identification purposes. With our period utility separable into consumption and labor, the

period 0 SWF is:

SWF0 := E0

[ ∞∑
t=0

βt

ˆ
i
ωyi,t (u(ci,t) − v(li,t)) ℓ(di)

]
, (36)

where the weights (ωy)y∈Y depend solely on the current productivity level due to Assumption A.
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In the Ramsey program, the planner aims to determine the fiscal policy corresponding to the

competitive equilibrium that maximizes aggregate welfare according to the criterion in equation

(36), while satisfying the government’s budget constraint. A Ramsey equilibrium is a fiscal policy,

prices, individual allocations and aggregate quantities solving the Ramsey program. A Ramsey

steady-state equilibrium is a time-invariant Ramsey equilibrium. Formally, the Ramsey program

can be stated as follows.

max
(wt,rt,w̃t,r̃t,τc

t ,τK
t ,τt,κt,Bt,Gt,Kt,Lt,(ci,t,li,t,ai,t,νi,t)i)t≥0

W0, (37)

Gt + (1 + rt)Bt−1 + wt

ˆ
i
(yi,tli,t)1−τtℓ(di) + rtKt−1 = τ c

t Ct + F (Kt−1, Lt, st) +Bt, (38)

for all i ∈ I: (1 + τ c
t )ci,t + ai,t = (1 + rt)ai,t−1 + wt(yi,tli,t)1−τt , (39)

ai,t ≥ −ā, νi,t(ai,t + ā) = 0, νi,t ≥ 0, (40)

u′(ci,t) = βEt

[
(1 + rt+1) 1 + τ c

t

1 + τ c
t+1

u′(ci,t+1)
]

+ νi,t, (41)

v′(li,t) = (1 − τt)
1 + τ c

t

wtyi,t(yi,tli,t)−τtu′(ci,t), (42)

Kt +Bt =
ˆ

i
ai,tℓ(di), Lt =

ˆ
i
yi,tli,tℓ(di), (43)

r̃t = FK(Kt−1, Lt) and w̃t = FL(Kt−1, Lt), (44)

rt = (1 − τK
t )r̃t, wt = κt(w̃t)1−τt . (45)

and subject to the positivity of labor and consumption choices, and initial conditions.

Since the Ramsey program involves selecting a competitive equilibrium, its constraints include

the equations characterizing this equilibrium: individual budget constraints (39), individual credit

constraints (and related constraints on νi,t) (40), Euler equations for consumption and labor -

(41) and (42) - and market clearing conditions for financial and labor markets (43). Moreover,

the fiscal policy selected by the Ramsey equilibrium should also fulfill the governmental budget

constraint (38) – which is indeed a constraint.

The general Ramsey program can be simplified. First, in our setup with a linear tax on

capital, a progressive tax on labor, and one-period public debt, the consumption tax is redundant

with other fiscal instruments. Second, we can follow Chamley (1986) and express the program

using post-tax prices only. Combining the two simplifications implies that the planner’s fiscal

instruments are: post-tax wage and interest rates Wt and Rt, labor tax progressivity and public

debt. They need to be chosen such that the governmental budget constraint (28) holds. The
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planner’s other choice variables also include individual and aggregate allocations that have to

be chosen so as to correspond to a competitive equilibrium. This means that individual budget

constraints (31), borrowing limits (32), and FOCs (33)–(34) are constraints of the Ramsey

program – as well as market clearing conditions (35). The reformulated Ramsey program is

formally stated in Proposition 3 of Appendix C.1.

5.4 Interpreting the Ramsey FOCs in the light of public finance

The economic trade-offs faced by the planner can be identified by the FOCs of the Ramsey

program, which can be found in Appendix C.2.23 We here discuss the economic interpretation

of the FOCs of the Ramsey program using the concepts of public finance and extending our

discussion of Section 3.3.

We focus on an arbitrary fiscal instrument (It)t, which in our context can be the capital

tax (or the post-tax instrument Rt), the labor tax level (or the post-tax instrument Wt), or the

labor tax progressivity. This analysis thus includes all instruments except public debt, which

is discussed below. We consider that the planner raises resources through a variation of the

fiscal instrument, which decreases the consumption of all agents. The Lagrangian associated to

problem (37) can be written as:

L = E0

∞∑
t=0

βt (Wt + µtBt) .

First, Wt is the “augmented welfare” of date t that includes the pure welfare component

ωyi,t(u(ci,t) − v(li,t)) as well as the general-equilibrium effects implied by individual decisions

about savings (i.e., Euler equation) and labor supply (i.e., FOC labor supply).24 This term

depends on the fiscal instrument It, and on all consumption levels (ci,t)i of date t. Second, Bt is

the governmental budget constraint at date t and µt the associated Lagrange multiplier – we keep

the same notation as in the simple case. As shown in Appendix C.2, the quantity Bt depends on
23Solving such a program through a Lagrangian raises a number of technical questions that have been discussed

in LeGrand and Ragot (2024) in detail.
24The consumption tax is redundant and as such does not imply any specific FOC.
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It but not on (ci,t)i. With this notation, the FOC with respect to It can be written as:25

µt =
ˆ

i

∂Wt

∂ci,t

∣∣∣∣∣
It︸ ︷︷ ︸

=SV Li,t

−∂ci,t

∂It

∂Bt
∂It

+ 1
µt

∂Wt
∂It

∣∣∣
ci,t︸ ︷︷ ︸

=MV P F I
i,t

ℓ(di), (46)

or

µt =
ˆ

i
SV Li,t ×MV PF I

i,tℓ(di). (47)

As in the simple case, the planner sets the instrument value to the point where the shadow price

of the governmental budget constraint (µt) equals its marginal cost, which equals to the sum

over all agents of the individual (negative) bangs for the buck of a cut in agents’ consumption

due to a change in the fiscal instrument. The cost affects all agents, as the instrument It is a

non-specific tax. Similarly to the simple case (11), the individual bangs for the buck of one unit

of resources raised through the fiscal instrument I equals the product of SVL, SV Li,t (which is

independent of the fiscal instrument and generalizes the notion of social marginal weight) and

the MVPF, denoted MV PF I
i,t (which is instrument-specific).

Similarly to the simple model, SV Li,t (which we denote by ψi,t in Appendix C) quantifies

the welfare reduction (increase) associated to a one-unit reduction in the consumption of agents

i, regardless of the fiscal instrument causing this reduction. As explained above, this welfare

reduction includes the endogenous effects on labor supply and savings generated by the variation

in consumption. The total welfare effect thus includes three terms:

SV Li,t = ωi,tu
′(ci,t)︸ ︷︷ ︸

=direct effect

− (λc,i,t −Rtλc,i,t−1)u′′(ci,t)︸ ︷︷ ︸
=externality on savings incentives

(48)

+ λl,i,t(1 − τt)Wt(yi,t)1−τt(li,t)−τtu′′(ci,t)︸ ︷︷ ︸
=externality on labor supply incentives

,

where βtλc,i,t and βtλl,i,t are the Lagrange multipliers on agent i’s Euler equation and labor supply

FOC, respectively. The first term, ωi,tu
′(ci,t), reflects the direct welfare effect of a consumption

variation. This is identical to the social marginal welfare weight in equation (11). However,

in our setting, welfare is also affected by the changes in savings and labor supply induced by

the variation in consumption. The welfare impact due to savings channels through the Euler

25 ∂Wt
∂ci,t

∣∣∣
It

is the partial derivative of Wt with respect to ci,t while keeping It constant; ∂Wt
∂It

∣∣
ci,t

is the partial
derivative of Wt with respect to It while keeping all ci,t constant.
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equation, while the one due to labor supply channels through the FOC on labor supply. This

explains why the indirect welfare effects of savings and labor supply are proportional to the

Lagrange multipliers. The notion of SVL thus generalizes the notion of MSWW to endogenous

labor and savings choices.26

The MVPF measures the variation (here, a decrease) in consumption implied by taxing one

resource unit from agent i by a marginal variation of the fiscal instrument It, including all fiscal

externalities implied by the instrument. In the term MV PF I
i,t of equation (46), in the absence of

a direct pecuniary externality of It, ∂Bt
∂It

measures the direct effect of the fiscal instrument on the

planner’s resources and is equal to the instrument fiscal base (i.e., all payoffs of interest-bearing

assets for the capital tax or the labor supply for the labor tax level). Conversely, 1
µt

∂Wt
∂It

∣∣∣
ci,t

is

the fiscal externality of It that channels through the modification of the savings incentives and

the Euler equation. This fiscal externality reflects that the instrument It is distortionary.

Note that if the planner would have access to a standard aggregate lump-sum transfer

T , the MVPF associated to that tax instrument would simply be 1. Indeed, the lump-sum

transfer involves no externality and is a flow of resources from the transfer to agents, such that:
∂Wt
∂Tt

∣∣∣
ci,t

= 0 and −∂ci,t

∂Tt
= ∂Bt

∂Tt
. Therefore, the planner would set Tt such that µt =

´
i SV Li,tℓ(di):

the marginal cost for the governmental budget equals the marginal benefit for all agents. Should

the planner have further access to individual-specific lump-sum transfers T i, each would be set

such that µt = SV Li,t. As explained in LeGrand and Ragot (2024), the difference SV Li,t − µt

can thus be thought as capturing the cost of distortionary fiscal instruments for the planner,

concerning agent i.

Public debt is the only fiscal instrument for which a FOC similar to equation (47) does

not hold. Indeed, public debt at date t affects the contemporaneous governmental budget

constraint, Bt (due to debt issuance), and the one of the next date, Bt+1 (due to debt repayment).

Furthermore, public debt has no direct impact on households’ welfare: ∂Wt
∂Bs

= 0. The FOC

related to debt can be written as µt
∂Bt
∂Bt

= βµt+1(−∂Bt+1
∂Bt

): relaxing the budget constraint today

comes at the cost of tightening it tomorrow. With the expression of the governmental budget

constraint, the public debt FOC becomes µt = βµt+1(1 + rt+1). This FOC is an Euler-like

equation, reflecting that the planner uses public debt to smooth out the cost of resources across

time.
26This SVL is similar to the quantity ĝ defined in Ferey et al. (2024) that they describe as “the social marginal

welfare weights augmented with the fiscal impact of income effects” and which represent “the full social value of
marginally increasing the disposable income of [an] individual”.
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5.5 Identification of weights

Our estimation involves identifying the SWF weights such that a Ramsey planner endowed with

these weights optimally selects the observed fiscal system and aggregate allocation of a given

country. More precisely, we follow the identification strategy of Definition 2 to estimate the

social weights (ωy)y∈Y of the SWF SWF0.

Fiscal policy is composed of five instruments (τK , τ c, B, κ, τ), but these five instruments

actually impose only two constraints on social weights. Indeed, consumption taxes τ c are

redundant, as explained above (see Appendix C.1 for the details). Second, the public debt FOC,

provided in equation (81) of Appendix C.2, imposes a steady-state value on the before-tax real

interest rate 1 + r̃ = 1/β, but does not restrict the social weights. Therefore, this means that

the instruments (τK , τ c, κ, τ) actually imply three FOCs. One of them is used to pin down the

Lagrange multiplier of the governmental budget constraint µt. The two remaining FOCs imply

the two linear constraints on the SWF weights.

The identification strategy of Definition 2 can thus be readily applied with three constraints:

the two linear constraints coming from the Ramsey FOCs and the normalization constraint.

We thus consider a parametric estimation, with three degrees of freedom that will be exactly

identified by the three constraints. We adopt the following functional form, which naturally

extends the one in Heathcote and Tsujiyama (2021):

∀y ∈ Y, logωy := ω̄0 + ω̄1 log(y) + ω̄2(log(y))2, (49)

where (ω̄i)i=0,1,2 are the three free parameters.

5.6 Solution method and algorithm

The Ramsey problem discussed in Section 5.3 involves a joint distribution across wealth and

Lagrange multipliers. This high-dimensional object raises a number of difficulties for the resolution

of the Ramsey program. We rely on the truncation method, which has already been used in

recent papers (LeGrand and Ragot, 2022b, 2023, 2024). We here improve on previous work to

allow for the estimation of the SWF with a utility function separable into consumption and labor,

instead of the GHH case considered in previous papers.

The basic idea is to construct a consistent finite state-space representation of the model and

use it to compute the FOCs of the Ramsey planner. We then use the inverse optimal approach

to estimate the SWF.
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More precisely, the solution method is based on the following steps.

1. We simulate the heterogeneous-agent model at the steady state, with realistic values for

the fiscal instruments and income and wealth inequalities. Standard solution techniques

provide the steady-state distribution of wealth Λ(a, y) for any idiosyncratic state y ∈ Y

and asset holding a, as well as the policy rules for wealth, consumption, and labor supply

denoted by ga(a, y), gc(a, y) and gl(a, y), respectively.

2. We consider a given finite set H of histories for which the transition matrix is a Markov

matrix. The most intuitive set of histories is composed of all histories of a given length N .

If there are Y idiosyncratic states, there will be Y N truncated histories.

3. We consider a so-called truncated history yN := {y1, . . . , yN } in the set H, which corresponds

to agents experiencing yN over the last N periods. Using the distribution Λ(a, y1) and

the policy rules, we can compute the distribution of wealth, denoted Λ̃(a, yN ), for any

truncated history yN and asset holding a.

4. Using the distribution Λ̃, we can aggregate key individual quantities and equations to

express them in terms of truncated histories. For instance, the size of truncated history yN

(i.e., the measure of agents with recent history yN ) is SyN =
´∞

0 Λ̃(da, yN ), or the per-capita

consumption cyN =
´∞

0 gc(a, yN )Λ̃(da, yN )/SyN . Finally, the average marginal utility is
´∞

0 u′(gc(a, yN ))Λ̃(da, yN )/SyN := ξu
yNu

′(cyN ), where ξu
yN captures both the non-linearity

of the marginal utility and the heterogeneity in the wealth distribution of agents having

the same history yN for the last N periods. The aggregation process thus generates Y N

budget constraints, Euler equations, and labor supply choices (see equations (94)–(96) in

Appendix D.1). This defines the truncated model.

5. We can compute the FOCs of the planner in the truncated model (see Appendix D.2).

6. We derive the two linear constraints on the SWF weights from the FOCs of the planner.

We use them as inputs in (20) for the identification strategy of Definition 2.

7. We consider the following functional form for the weights: ωy := eω̄0+ω̄1 log(y)+ω̄2(log(y))2 with

(ω̄i)i=1,...,3 being the parameters. We then apply the identification strategy of Definition 2.

8. Using some measure of political weights ωP,y, we determine the IWFs using the expression

(22) of the identification strategy of Definition 3.
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The detailed derivations of these steps is performed in Appendix D. We consider 10 idiosyncratic

states and N = 5 as a benchmark, and thus 105 possible histories. The estimation process takes

less than 3 minutes, and we have checked that the results are robust to an increase in N . We

now provide the quantitative investigation, and further discuss the choice of the measures of the

political weights in Section 3.4.

6 Quantitative investigation

We first provide the calibrations reproducing the tax system and the wealth distribution in both

the US and France for the period 1995-2007. We then estimate the SWFs in both countries.

6.1 Calibration

The US calibration

The estimation parameters are gathered in Table III, and we detail below our calibration strategy.

Preference parameters. The period is a quarter. The discount factor is set to β = 0.992 to

match a realistic capital-to-output ratio. The period utility functions are u(c) = c1−γ − 1
1 − γ

and

v(l) = 1
χ

l
1
φ

+1

1
φ + 1

. We set the inverse of intertemporal elasticity to γ = 1.8 to match a realistic

wealth inequality for the targeted capital-to-output ratio. Furthermore, the Frisch elasticity for

labor is set to φ = 0.5, which is recommended by Chetty et al. (2011). We set the labor-scaling

parameter to χ = 0.0477, which implies normalizing the aggregate labor supply to 0.3.

Technology. The production function is of the Cobb-Douglas form and subsumes capital

depreciation: F (K,L, s) = sKαL1−α − δK. The capital share is set to the standard value,

α = 36%, while the depreciation rate is set to δ = 2.5%.

Idiosyncratic labor risk. Various estimations of the idiosyncratic process can be found

in the literature. The productivity follows an AR(1) process: log yt = ρy log yt−1 + εy
t , with

εy
t ∼IID N (0, σ2

y). The calibration features a persistence ρy = 0.99 and a standard deviation

σy = 0.0995, which is close to the estimates of Krueger et al. (2018). We discretize this AR(1)

process using the Tauchen (1986) procedure, with 10 states. This calibration implies a Gini index

after tax and transfers of 0.40, as in Table I.
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Taxes and government budget constraint. Fiscal parameters are calibrated based on

the computations by Trabandt and Uhlig (2011) reported in Table I, with the exception of the

progressivity of the labor tax, which we computed ourselves and reported in Table II. We recall

that their estimations for the US in the period 1995-2007 yielded a capital tax of τK = 36% and

a consumption tax of τ c = 5%. In our estimation for the progressivity parameter, we obtain

τ = 0.16, which is close to the estimates in the literature (see Section 2 for the details of our

estimation).

Finally, we estimate the parameter κ such that it matches the public-spending-to-GDP ratio

of 15%. We obtain a value of κ = 0.85, which is close to the estimates of Ferriere and Navarro

(2023). With this fiscal system, the model generates a public-debt-to-GDP ratio equal to 63%,

which corresponds to the value reported in Table I.

Additionally, the model performs well in replicating the ratios of consumption over GDP and

investment over GDP. The model predicts a consumption-to-GDP ratio of 58%, very close to its

empirical counterpart of 60% for the period 1995-2007. The investment-to-GDP ratio generated

by the model amounts to 27%, close to the empirical value of 25%. Finally, regarding inequalities,

the model generates a Gini index for post-tax income equal to 0.40, identical to its empirical

counterpart in Table I. The Gini index for wealth is found to be 0.78, very close to its empirical

value of 0.77 in Table I.

We gather the model implications in Table IV. These implications show that our tax system

provides a good approximation of the income and wealth distribution in the US, and hence of the

redistributive effects of the US tax system. This confirms the results of Heathcote et al. (2017)

and Dyrda and Pedroni (2022).

French calibration

The calibration for France shares a number of similarities with the one for the US. We use the

same period and the same functional forms. For the sake of clarity, we mimic the structure of the

US calibration, even though our presentation is more streamlined. The calibration parameters

can be found, as those for the US, in Table III.

Preference parameters. The discount factor is set to β = 0.996 and the Frisch elasticity for

the labor supply is still equal to φ = 0.5. We fix the scaling parameter to χ = 0.0228, which

implies an aggregate labor supply normalized to 0.3. It happens that the same risk-aversion
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TABLE III
Parameter values

US France

Parameter Description Value Target or ref. Value Target or ref.

Preference parameters
β discount factor 0.992 K/Y = 2.7 0.996 K/Y = 3.1
u utility function · γ = 1.8 · γ = 1.8
φ Frisch elasticity 0.5 Chetty et al. (2011) 0.5 Chetty et al. (2011)
χ hours worked 0.33 Penn World Table 0.29 Penn World Table
α capital share 36% Profit Share, NIPA 36% Profit Share, INSEE
δ depreciation rate 2.5% Chetty et al. (2011) 2.5% Own calc., INSEE

Productivity parameters
σy std. err. prod. 0.10 Gini for income 0.06 Fonseca et al. (2023)
ρy autocorr. prod. 0.99 Gini for income 0.99 Fonseca et al. (2023)

parameter γ = 1.8 is consistent with French statistics.

Technology and TFP shock. We keep the same production function: F (K,L, s) = sKαL1−α−

δK, with the same parameter values: α = 36% and δ = 2.5%.27

Idiosyncratic risk. The AR(1) productivity process is calibrated using ρy = 0.99 and σy =

0.0646. These values are in line with the estimates of Fonseca et al. (2023). As for the US

calibration, we discretize this process with 10 states.

Taxes and government budget constraint. We use the values summarized in Table I for

the French taxes, except for the labor tax, which is progressive. We consider a capital tax of

τK = 35%, a progressivity parameter of τ = 0.23, and a consumption tax of τ c = 18%. This tax

system has realistic implications for the model. In terms of public finance, we use κ = 0.728 to

match the empirical public-spending-to-GDP of 24%. This implies a public-debt-to-GDP ratio

of 60%, which matches the value of Table I. Regarding private consumption and investment,

the model generates aggregate private consumption equal to 44% of GDP, which is close to the

empirical counterpart of 45% estimated by Trabandt and Uhlig (2011) for the period 1995-2007,

while investment amounts to 31% of GDP, equal to its empirical counterpart. Finally, in terms

of inequalities, the model implies a Gini index for post-tax income of 0.28 and a Gini index for
27We are keeping the same values as in the United States to emphasize that the differences in the SWFs are due

to differences in the fiscal systems and not to different production functions.
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wealth of 0.68. These two Gini values match their empirical counterparts of Table I. Again, this

confirms that the tax system is empirically relevant.

TABLE IV
Model implications for key variables

US France

Parameter Description Model Data Model Data

Public finance aspects
B/Y Public debt (%GDP) 63% 63% 60% 60%
G/Y Public spending (%GDP) 15% 15% 25% 24%

Total tax revenues (%GDP) 16% 26% 25% 40%
Aggregate quantities
C/Y Aggregate consumption (%GDP) 58% 60% 44% 45%
I/Y Aggregate investment (%GDP) 27% 25% 31% 31%

Inequality measures
Gini for post-tax income 40% 40% 28% 28%

Gini for wealth 78% 77% 68% 68%

Note: Empirical values are discussed in Section 2 and summarized in Table I.

6.2 Estimation of the SWFs

The estimation procedure follows the algorithm presented in Section 5.3 and the algebra of

Appendix D. For the simulations below, we consider a truncation length of N = 5, although

the main characteristic of the results do not change when we consider longer truncation lengths.

As there are 10 idiosyncratic productivity levels, the number of truncated histories amounts to

N tot = 105 = 100000.

As discussed in Section 5.5, the weights are obtained such that the FOCs of the planner are

exactly identified. We apply the algorithm of Section 5.6 and we obtain the following parametric

function for the US and France, respectively:

logω(y)us = − 0.25 + 1.06 log(y) + 0.22(log(y))2,

logω(y)fr = − 0.51 + 0.62 log(y) + 1.44(log(y))2.

In Figure II, we plot the weights of the SWF as a function of the 10 productivity indices of

agents. We observe that in the US, the period weights increase with productivity level, whereas

for France they exhibit a U-shaped pattern, assigning higher weights to low-productivity agents

compared to those at the top of the productivity distribution.

39



In the US, agents with the highest weight in the population are those with the highest

productivity. In France, low-productivity agents have a higher weight than those with medium

productivity. The high productivity agents have the highest weights.

FIGURE II
Parametric period weights as a function of productivity for the US and France

(a) United States (b) France

Implied marginal weights

As discussed in Section 5.4, the public finance literature often considers the SMWWs, which are

the products of the social weights by the average marginal utility for each productivity level:

ωiū′
i. Although the relevant concept for the planner in our environment is the SVL (see equation

(48)), it is useful to represent implied SMWWs, as they have been estimated for the US (e.g.,

Hendren, 2020). Figure III represents the mean SMWWs in each quintile of the labor income, as

a function of the labor income quintile. SMWWs are normalized such that they average to 1

across quintiles.

The shape of mean SMWWs is similar in both countries. The SMWWs are decreasing with

income quintile, except for the last quintile, for which they are increasing. This shows that the

same shape for SMWWs can be consistent with very different SWF weights.

Interestingly, the shape for the US is similar to that estimated by Hendren (2020) using fiscal

data – to our knowledge, there is no such estimation for France. The SMWWs are found to

be decreasing with income quantile, except at the end of the distribution, where they slightly

increase. Hendren’s weights for first quintile have a lower value than ours: they amount to 1.2,

while ours are about 1.8.28 This difference comes from the fact that low productivity agents have
28These different initial values also change the concavity of the SMWWs relationships.
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FIGURE III
Mean SMWWs per quintile as a function of the quintile of labor income in the

United States and in France

(a) United States (b) France

a very high marginal utility in our case, as we do not take into account some money transfers,

which are captured in Hendren. Indeed, our fiscal system, although relevant for macroeconomics,

is very simple compared to the actual transfer scheme in the US.

Despite these differences, we consider that the similarity in the general shape is promising

and encouraging. It shows that heterogeneous-agent models can be consistent with the empirical

public finance literature.

6.3 Investigating the drivers of the weight differences between the US and

France

Before interpreting these weights, we use the previous methodology to investigate the drivers

behind the differing weights assigned to agents in the United States and France. The objective

of this section is to understand why their respective weights differ so much. We decompose the

differences along the three sources of heterogeneity between the two countries: (i) the discount

factor β; (ii) the fiscal system; (iii) the productivity process. Indeed, the calibrations of the two

countries differ only along these three dimensions.

We start with the role of the discount factor. In panel (a) of Figure IV, the red dotted line

represents the SWF weights as a function of productivity for the US calibration, except the

discount factor which is set to the French value. Compared to the original weights, there is a

slight increase in the weights for low productivity agents, but the overall shape remains similar:

higher weights are given to agents with higher productivity levels. Similarly, in panel (b), the

red dotted line plots the weights for France adopting the US discount factor. We observe that
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the weights for low-productivity agents in France decrease, while those for high-productivity

agents increase. However, the discount factor alone does not fully account for the differences in

weights between the two countries. Overall, making agents and the planner more patient (i.e.,

increasing β) tends to increase the weights of low-productivity agents, and to decrease those of

high-productivity agents.

Second, we analyze the impact of the fiscal systems. Panel (a) of Figure IV shows the US

weights with the French tax system and the French β (orange dashed line). The weights for lower

productivity agents increase at the expense of those for higher productivity agents. Conversely, in

panel (b) of Figure IV, we plot the weights when France adopts the US tax system in addition to

the US β. The results mirror those of the US: The weights for low-productivity agents decrease,

while those for high-productivity agents increase. This exercise illustrates the role of the fiscal

system. The French tax system, characterized by a higher progressivity and a greater inclination

to reduce inequality, contributes to increase the weights of lower productivity agents at the

expense of those of higher productivity ones. The role of the US tax system, which is more

Libertarian (as we will discuss below), has an opposite effect.

Finally, to fully uncover the differences in weights, we incorporate the French income process

into the US economy, in addition to the French β and the French tax system. The resulting

weights then exactly replicate the French weights (blue line in panel (a) of Figure IV). This is

a mechanical result, as in this case the modified US economy has the same calibration as the

baseline French economy. We observe the same result for France (panel (b)).

FIGURE IV
Impact of different preference parameters, tax systems, and income processes on

the US and French period weights

(a) United States (b) France
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We analyze further the impact for the US of opting for the French tax system – and the

other way around. Figure A.I in Appendix E illustrates the role of the fiscal system on SWF

weights, utility, labor, and capital income. Adopting the French tax system in the US reduces

labor income for high-productivity agents, because it reduces labor supply incentives. Thus, it

also reduces the utility of these high-productivity agents. This heavier labor taxation results

from the lower weights assigned to high-productivity agents by the social planner. Conversely,

the progressive tax system boosts the consumption and the utility of low-productivity agents,

and is the result of their larger SWF weights. This experiment demonstrates that changes in the

tax system can explain changes in weights. For the US to increase weights for low-productivity

agents and decrease weights for high-productivity agents, adopting a more progressive labor tax

is effective. The relatively low labor tax in the US favors high-income/high-productivity agents.

6.4 A world where the US has the French SWF

We now compute the US fiscal system that makes its SWF weights as close as possible to those

of France. The goal is to find a fiscal system in the US where the distance between the weights

in the modified US economy and in the benchmark France economy is minimized. This exercise

aims to understand the role of social preferences in shaping the tax system, distinct from the

influence of technology and individual preferences.

We conduct the experiment as follows. We consider a fictive economy based on the following

elements of the US calibration: the preference parameters, the production function, and the

productivity process. Independently of the fiscal scheme, this sets the steady-state value of the

capital-to-output ratio. We then iterate over the capital tax rate and the progressivity of the

labor tax to minimize the distance between the SWF weights in the fictive economy and in France.

We keep adjusting the parameter κ, driving the labor tax level, to keep the fictive government

spending-to-output ratio equal to its US counterpart. This means that for any fiscal policy, the

main macroeconomic ratios (capital-to-output, investment-to-output, aggregate consumption to

output, and public spending to output) in the fictive economy are identical to those in the US.

There is subtlety in the computation of the distance between the SWF weights. On the one

hand, the benchmark SWF weights of France correspond to its productivity levels. On the other

hand, the weights we calculate in the fictive economy correspond to the US productivity levels,

as we are considering the productivity process of the US. To compute the distance, we define

the weights of the two economies for the same productivity levels. We therefore interpolate the
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weights to obtain their values for both the US and the French productivity levels. The objective

we minimize is thus the Euclidean distance between the SWF weights computed for French and

US productivity levels.

The minimization yields a new fiscal system that corresponds to the “core” US economy

with the French SWF. We refer to this economy as the US with French SWF. Figure V plots

the weights of the US with French SWF and the weights of France as a function of the French

productivity levels. As can be seen, the minimization procedure is successful in finding a fiscal

system that allows the SWF weights of the two economies to be quite close to each other.

FIGURE V
SWF weights for France (red dashed line) and for the US with the tax system

that minimizes the distance to the French weights (blue line)

Note: The x-axis corresponds the 10 productivity levels in France.

We report in Table V the values of the new fiscal system in the US with French SWF economy.

For the sake of comparison, we also report the fiscal system of the (baseline) US and French

economies. As can be seen from the Gini values, the distribution of income and wealth in the US

with French SWF is now much closer to its French counterparts, and therefore less unequal than

in the US.

TABLE V
Comparison between the benchmark economies and the US economy with the

French SWF

Public debt
(%GDP)

τk (%) τ (%) κ (%) Gini post-tax
income

Gini
wealth

US 63 36 16 85 40 78
France 60 35 23 73 28 68

US with French SWF 299 9 57 71 27 63
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This reduction in equality comes mostly from the higher weight of low-productivity/low-

income agents. This higher weight translates into a much higher progressivity. The progressivity

indeed increases from 16% to 57%. We recall that the other “core” parameters, as well as the main

macro ratios (e.g., consumption-to-GDP, government spending-to-GDP, investment-to-GDP)

remain the same as in the benchmark US economy. In particular, the pre-tax interest rate is kept

at its optimal value, which is the inverse of the discount factor. Because of the labor taxation,

the labor supply falls, which means that the capital also falls to keep the capital-to-labor ratio

constant. However, agents still have the US productivity levels, which makes them overall save

more than in France. This requires an increase in public debt to absorb the excess savings.

This higher progressivity is detrimental to high-productivity agents. However, they have a

quite a large weight in the French SWF. To partly offset the large progressivity increase for those

agents, the capital tax is lowered. This lower capital tax also tends to boost aggregate savings,

and hence also contributes to increase the public debt. Ultimately, the middle class suffers from

the higher progressivity and does not benefit much from the lower capital tax, which is why they

have the lowest weights in the population.

The increase in public debt and the decrease in capital taxes requires an increase in the labor

tax to compensate for the loss in tax returns – as this instrument is adjusted to keep the public

spending-to-GDP ratio unchanged.

6.5 Identification of IWFs

We now derive the estimated IWFs from the estimated SWF for each country. We follow the

algorithm of Section 5.6, which relies on the estimation strategy of Definition 3 of Section 4.4. The

first step is to estimate the political weights ωP of the various groups of agents. To approximate

these, we rely on voter turnout in major elections as a function of average income. We thus follow

the political economy literature, which uses turnout inequality as a proxy for the evolution of

political inequality (see Cagé, 2024, for a discussion). Other proxies, such as political donations

in the US, are also considered in the political economy literature. However, political donations

are very small in France, and do not allow for a proper comparison between France and the US.

Figure VI plots the participation rate in percent as a function of the annual individual income

in the US (panel a) and in France (panel b). For each country, the annual individual income

is expressed as a percentage of the average annual individual income of the country.29 In the
29US data are taken from Table 8 the Current Population Survey of November 2008 of the U.S. Census Bureau.
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FIGURE VI
Participation rates (in percent) as a function of annual individual income

(expressed as a percentage of average income)

a) United States b) France

Note: US data refer to the 2008 presidential election. Data for France are for the 2007 presidential election. The
100 on the x-axis is the average income in each country.

US, average individual income is $ 51726, while it is 31093€ for France (both in 2007). We

observe that the participation rate is increasing and concave in income for both countries. Our

identification assumption is that the ratio of participation rates between income groups identifies

the ratio of political weights. Formally: ωP,y

ωP,ỹ
= P arty

P artỹ
, where Party is the participation rate of

income group y, which is interpolated from Figure VI. As a consequence, the shape of political

weights follows the shape of participation rates. The higher average participation rate in France

compared to the US is not reflected in political weights.

With these political weights, we can calculate the IWFs of equation (22) in Definition 3.

The results are plotted in Figure VII, where the left panel (a) is for the US and the right panel

(b) is for France. More precisely, we report the politically-weighted factors given by agents of

productivity y (Actual productivity) to agents of productivity ỹ (Considered productivity). The

politically-weighted factors on the z-axis are equal to the value of ωP,yπyωy,ỹ for all y, ỹ = 1, . . . , 10.

As explained in Section 4.4, these factors have a simple interpretation: the larger the factors

ωP,yπyωy,ỹ, the more agents y affect the valuation of the planner for agents ỹ.

First, in both countries, the diagonal features high weights, reflecting that the self-interest

motive dominates the altruistic one: agents mostly care about their own productivity.30 The

diagonal weights are also increasing with productivity in both countries, which mirrors the higher

French data are taken from IPSOS data for participation rates as a function of occupations and DADS 2007 to
obtain the annual income for each occupation.

30We recall that equation (22) implies πyωP,yω̂yy = 1 + πy(ωP,y)2∑
ỹ∈Y∞ πỹ(ωP,ỹ)2 (ωy − 1).
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FIGURE VII
IWF weights for the US and France

(a) US (b) France
Note: The IWF weights are measured as politically-weighted factors (ωP,yπyωy,ỹ)y,ỹ. Actual productivity is the
productivity y of the agents, while Considered productivity is the productivity ỹ of the agents under consideration.

political weight of high-productivity agents. In the US, the increase is steeper than in France,

and diagonal weights reach higher values than in France, because SWF weights are also higher.

In consequence, the most productive agents have the highest impact in social preferences, and

this is especially true for the US. This is consistent with the results of Section 6.2.

Second, out of the diagonal, the US weights exhibit an increasing pattern in ỹ for each

productivity level y. This is especially true for middle-class agents, corresponding to intermediate

values of y, who have the largest share in the population. Such a shape has been qualified as

Libertarian for the welfare functions in Section 3.4: higher weights are attributed to the most

productive agents. Third, out of the diagonal, the French weights exhibit a U-shape pattern,

consistent with the finding of 6.2 for the French SWF. Hence, the French welfare functions are

Egalitarian for low productivity levels but Libertarian for high productivity levels.

7 Conclusion

We propose a methodology to identify the Social Welfare Function (SWF) and Individual Welfare

Functions (IWFs) from a country’s empirical wealth and income distributions and its actual

tax structure. We implement it for both France and the US. Using four fiscal instruments

– consumption, capital and progressive labor taxes, and public debt – we have estimated the

SWFs in the two countries and showed that they differ from each other. The SWF for France

gives a higher weight to low-productivity agents and is less heterogeneous than that of the

US, while the US SWF has an increasing shape in productivity with larger weights given to

higher-productivity agents. The US thus appears to be more Libertarian than France, while
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France is more Egalitarian than the US, especially for low income levels. These results pave the

way for future research, particularly regarding the stability of social preferences over time. A key

first step in this area is to investigate the role of the SWF in the fiscal response to economic

shocks, particularly in terms of business cycle stabilization. Understanding this is essential for

identifying the SWF by extracting insights from short-term changes in the fiscal system.

François LeGrand, Rennes School of Business

Xavier Ragot, SciencesPo-CNRS, OFCE, and CEPR
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Online Appendix

A Proofs related to the SWF construction

A.1 Construction of the measure on the set of idiosyncratic histories Y∞

We can construct a probability space related to the set of infinite idiosyncratic histories, Y∞. We

summarize here the construction, and further details can be found in LeGrand and Ragot (2022a,

Appendix B.3). Consistently with the main text, we will typically denote by yt an element of

Y∞. Such an element ỹt ∈ Y∞ can be described as a left-infinite sequence:

ỹt = (. . . , y−k(ỹt), . . . , y−1(ỹt), y0(ỹt)),

where each y−k : Y∞ → Y is a coordinate function returning the idiosyncratic state k periods

ago. For the sake of simplicity, and as in the main text, we will denote by yt
s := y−(t−s)(yt) for

any s ≤ t the state at date s, which is t− s periods ahead of date t.

We define L(yt) as the past of history yt – which discards the current state yt
t:

L(yt) = (. . . , yt
t−k, . . . , y

t
t−1).

Consistently with the main text, we also denote by yt−1,t the past history of yt: yt−1,t = L(yt).

We can then define the cylinder sets Ck(A) for any k ≥ 1 and any A ⊂ Yk as:

Ck(A) = {yt ∈ Y∞ : (yt
t−k+1, . . . , y

t
t) ∈ A}.

The cylinder set Ck(A) is the subset of Y∞ containing all idiosyncratic histories whose truncation

of length k belongs to A. We then define C0 as the set of all cylinder sets, which can be shown

to be a field (Billingsley, 2012, Section 2). We denote by F := σ(C0) the cylindrical σ-algebra

generated by C0, and we define the set function µ : C0 → R from the transition matrix Π and the

stationary vector π, such that for any k ≥ 2 and any A ⊂ Yk:
µ(Ck(A)) =

∑
(y−k+1,...,y0)∈A πy−k+1Πy−k+1y−k+2 . . .Πy−1y0 for any k ≥ 2 and A ⊂ Yk,

µ(C1(A)) =
∑

y0∈A πy0 for any A ⊂ Y.
(50)

Finally, we can state the following lemma.

Lemma 1 The triplet (Y∞,F , µ) is a probability space.
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Proof. A proof can be found in Billingsley (2012, Section 2). The key part of the proof is to

extend the measure µ defined on C0 to a measure defined on σ(C0) = F . A consequence of

Lemma 1 is that µ(Y∞) = 1, or
´

yt∈Y∞ µ(dyt) = 1.

A.2 The conditional measure

To lighten formulas, for any (y−k+1, . . . y0) ∈ Yk, we define y−k+1:0 := (y−k+1, . . . , y0) as the

vector of length k, containing elements whose indices range from −k + 1 to 0. Similarly, for any

ỹt ∈ Y∞, ỹt
(t−k+1:t) = (ỹt

t−k+1, . . . , ỹ
t
t) is the vector of the k last realization of ỹt. We define µ1

by:

µ1(C1(Y1)|ỹt) =
∑

yt+1∈Y1

Πỹt
tyt+1 , for any Y1 ⊂ Y, (51)

∀k ≥ 2, µ1(Ck(Yk)|ỹt) =
∑

y(t−k+2):t+1∈Yk

Πỹt
tyt+11y(t−k+2):t=ỹt

t−k+2:t
, for any Yk ⊂ Yk, (52)

where for any elements x, x̃ of the same set, 1x=x̃ = 1 if x = x̃ and 1x=x̃ = 0 otherwise. Intuitively,

the expression in (52) sums, over all possible vectors y(t−k+2):t+1 of length k, the probability

to switch from ỹt to a history ending up in y(t−k+2):t+1. The latter probability is equal to the

probability to switch from ỹt
t to yt+1, provided that ỹt and y(t−k+2):t are compatible (i.e., the

k− 1 last realization of ỹt equals y(t−k+2):t). Note that we could also write: 1y(t−k+2:t)=ỹt
(t−k+2:t)

=∏k−2
j=0 1yt−j=ỹt

t−j
.

Lemma 2 For any ỹt ∈ Y∞, the set function C ∈ C0 7→ µ1(C|ỹt) is a pre-measure.

Proof.

In the remainder of the proof, we set ỹt ∈ Y∞. As a preliminary, we state two properties

that we will use extensively below:

– For all k′ ≥ k ≥ 1, for all Yk ⊂ Yk, for all Y ′
k′−k ⊂ Yk′−k:

∑
y(t−k′+2):t+1∈Y ′

k′−k
×Yk

Πỹt
tyt+11y(t−k′+2):t=ỹt

(t−k′+2):t
= (53)

∑
y(t−k+2):t+1∈Yk

(
Πỹt

tyt+11y(t−k+2):t=ỹt
(t−k+2):t

×

∑
y(t−k′+2):(t−k+1)∈Y ′

k′−k

1y(t−k′+2):(t−k+1)=ỹt
(t−k′+2):(t−k+1)

)
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– For all k′ ≥ k ≥ 0: ∑
yt−k′:t−k∈Yk′−k+1

1yt−k′:t−k=ỹt
t−k′:t−k

= 1. (54)

In the remainder these will be referred to by their equation numbering. The proof of (54) is

straightforward and comes from the fact that (ỹt
t−k′ , . . . , ỹt

t−k) is a unique element of the set

Yk′−k+1. For the proof of (53), we denote by Sk,k′ the left-hand side. We have:

Sk,k′ =
∑

y(t−k+2):t+1∈Yk

∑
y(t−k′+2):(t−k+1)∈Y ′

k′−k

(
Πỹt

tyt+1× (55)

1y(t−k+2):t=ỹt
(t−k+2):t

1y(t−k′+2):(t−k+1)=ỹt
(t−k′+2):(t−k+1)

)
,

where we have used the properties of a sum on a product space and the fact that (x, y) = (x′, y′)

iff x = x′ and y = y′ (where (x, x′) and (y, y′) are two pairs of vectors of the same length). Then

we can factorize Πỹt
tyt+1 and 1y(t−k+2):t=ỹt

(t−k+2):t
in (55), as they are independent from the sum

over y(t−k′+2):(t−k+1) ∈ Y ′
k′−k. We then readily obtain (53).

We now go back to the proof of Lemma 2. Three properties need to hold: (i) well-defined,

(ii) (countably) additive, (iii) µ1(Y∞|ỹt) = 1 for all ỹt ∈ Y∞.

For Point (i), we need to check that µ1(Ck(Yk)|ỹt) = µ1(Ck′(Yk′−k × Yk)|ỹt) for all k′ ≥ k.

We have for k ≥ 2:

µ1(Ck′(Yk′−k × Yk)|ỹt) =
∑

y(t−k′+2):t+1∈Yk′−k×Yk

Πỹt
tyt+11y(t−k′+2):t=ỹt

(t−k′+2):t
,

=
∑

y(t−k+2):t+1∈Yk

Πỹt
tyt+11y(t−k+2):t=ỹt

(t−k+2):t
= µ1(Ck(Yk)|ỹt), (56)

where the first and last equalities use the definition of µ1, and the second the combination of

properties (53) and (54).

We need to prove the result for k = 1. We have for k′ ≥ 1:

µ1(Ck′(Yk′−1 × Y1)|ỹt) =
∑

yt+1∈Y1

Πỹt
tyt+1

( ∑
y(t−k′+2):t∈Yk′−1

1y(t−k′+2):t=ỹt
(t−k′+2):t

)
,

=
∑

yt+1∈Y1

Πỹt
tyt+1 = µ1(C1(Y1)|ỹt),

where the first equality combines the definition of µ1 and (53), the second uses the property (54),

and the last the definition of µ1.

For point (ii), we consider two disjoint cylinders, Ck(Yk) and Ck′(Y ′
k′) (k′ ≥ k, Yk ⊂ Yk and

Y ′
k′ ⊂ Yk′). Since both cylinders are disjoint, then Yk′−k × Yk and Y ′

k′ are disjoint too. We
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deduce that:

µ1(Ck(Yk) ∪ Ck′(Y ′
k′)|ỹt) = µ1(Ck′((Yk′−k × Yk) ∪ Y ′

k′)|ỹt),

=
∑

y(t−k′+2):t+1∈(Yk′−k×Yk)∪Y ′
k′

Πỹt
tyt+11y(t−k′+2):t=ỹt

(t−k′+2):t
,

=
∑

y(t−k′+2):t+1∈(Yk′−k×Yk)

Πỹt
tyt+11y(t−k′+2):t=ỹt

(t−k′+2):t

+
∑

y(t−k′+2):t+1∈Y ′
k′

Πỹt
tyt+11y(t−k′+2):t=ỹt

(t−k′+2):t
,

=
∑

y(t−k+2):t+1∈Yk

Πỹt
tyt+11y(t−k+2):t=ỹt

(t−k+2):t

+
∑

y(t−k′+2):t+1∈Y ′
k′

Πỹt
tyt+11y(t−k′+2):t=ỹt

(t−k′+2):t
,

= µ1(Ck(Yk)|ỹt) + µ1(Ck′(Y ′
k′)|ỹt),

where the first equality uses the algebra property of cylinder sets, the second the definition of

µ1, the third the property that Yk′−k × Yk and Y ′
k′ are disjoint, the fourth the combination of

properties (53) and (54), and the last the definition of µ1 twice. We have thus proved that

µ1(·|ỹt) is finitely additive.

For point (iii), let k ≥ 2. We have:

µ1(Ck(Yk)|ỹt) =
∑

yt+1∈Y
Πỹt

tyt+1

∑
y(t−k+2):t∈Yk−1

1y(t−k+2):t=ỹt
(t−k+2):t

,

=
∑

yt+1∈Y
Πỹt

tyt+1 = 1,

where the first equality uses the definition of µ1 and (53), the second property (54), and the

third the property of the transition matrix Π. We thus deduce that µ1(Y∞|ỹt) = 1.

We have proven that µ1(·|ỹt) is a finitely additive probability measure on the algebra C0.

Billingsley (2012, Theorem 2.3) states that any finitely additive probability measure on the

cylinder algebra is countably additive. We thus conclude that µ1 is a countably additive

probability measure on C0 and is thus a pre-measure on C0.

We then prove the following lemma. We recall that F is the cylindrical σ-algebra, σ(C0),

generated by C0.

Lemma 3 For all ỹt ∈ Y∞, the function µ1(·|ỹt) uniquely extends to a measure on F .

The proof is similar to the one showing the extension of µ as a pre-measure on C0 to a measure
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on F . It relies on the Hahn-Kolmogorov theorem (Billingsley 2012, Theorem 3.1). See LeGrand

and Ragot (2022a, Lemma 3 in Section B.3).

Finally we can state the following lemma, showing that µ1 is a conditional measure.

Lemma 4 For all ỹt ∈ Y∞ and for all F ∈ F :
ˆ

ỹt∈Y∞
µ1(F |ỹt)µ(dỹt) = µ(F ). (57)

Proof. We first prove (57) for F being a cylinder set.

First, let Y1 ⊂ Y and consider C1(Y1). We have:
ˆ

ỹt∈Y∞
µ1(C1(Y1)|ỹt)µ(dỹt) =

ˆ
ỹt∈Y∞

∑
yt+1∈Y1

Πỹt
tyt+1µ(dỹt),

=
∑

ỹt
t∈Y

πỹt
t

∑
yt+1∈Y1

Πỹt
tyt+1 ,

=
∑

yt+1∈Y1

∑
ỹt

t∈Y
πỹt

t
Πỹt

tyt+1 ,

=
∑

yt+1∈Y1

πy0 = µ(C1(Y1)),

where the first equality comes from the definition (51) of µ1, the second from the fact that the

integral is actually carried over a cylinder set of the form C1(Y) and from the definition (50) of

µ, the third from the permutation of finite sums, the fourth from the fact that π is stationary

(
∑

y∈Y πyΠyy′ = πy′), and the last (on the same line as the fourth) from the definition (50) of µ.

Second, let Yk ⊂ Yk and consider Ck(Yk). We have:
ˆ

ỹt∈Y∞
µ1(Ck(Yk)|ỹt)µ(dỹt)

=
ˆ

ỹt∈Y∞

∑
y(t−k+2):t+1∈Yk

Πỹt
tyt+11y(t−k+2):t=ỹt

(t−k+2):t
µ(dỹt),

=
∑

ỹt
(t−k+2):t∈Yk−1

πỹt
t−k+2

Πỹt
t−k+2ỹt

t−k+3
. . .Πỹt

t−1ỹt
t

∑
y(t−k+2):t+1∈Yk

Πỹt
tyt+11y(t−k+2):t=ỹt

(t−k+2):t
,

=
∑

y(t−k+2):t+1∈Yk

∑
ỹt

(t−k+2):t∈Yk−1

πỹt
t−k+2

Πỹt
t−k+2ỹt

t−k+3
. . .Πỹt

t−1ỹt
t
Πỹt

tyt+11y(t−k+2):t=ỹt
(t−k+2):t

,

=
∑

y(t−k+2):t+1∈Yk

πyt−k+2Πyt−k+2yt−k+3 . . .Πyt−1ytΠytyt+1 = µ(Ck(Yk)),

where the first equality comes from the definition (52) of µ1, the second from the fact that the

integral is actually carried over a cylinder set of the form Ck−1(Yk−1) and from the definition

(50) of µ, the third from the permutation of finite sums, the fourth from the fact that all terms
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in the sum over ỹt
(t−k+2):t ∈ Yk−1 are zero except the one for ỹt

(t−k+2):t = y(t−k+2):t, and the last

from the definition (50) of µ. This proves (57) on C0. Since cylinder sets are a generating family

of F and a π-system, the equality (57) also holds on σ(C0) = F .

We finally prove the following lemma. It justifies that in the main text we define µ1 as

µ1(dyt+1|ỹt) = Πỹt
tyt+1

t+1
δỹt(dyt).

Lemma 5 For all ỹt ∈ Y∞ and for all C ∈ C0, we have:

µ1(C|ỹt) =
ˆ

yt+1∈C
Πỹt

tyt+1
t+1
δỹt(L(dyt+1)),

where δỹt is the Dirac mass in ỹt.

Proof. Let Yk ⊂ Yk for some k ≥ 1.

For k = 1, we have:
ˆ

yt+1∈C1(Y1)
Πỹt

tyt+1
t+1
δỹt(L(dyt+1)) =

ˆ
(yt,yt+1)∈Y∞×Y1

Πỹt
tyt+1δỹt(dyt),

=
∑

yt+1∈Y1

Πỹt
tyt+1

ˆ
yt∈Y∞

δỹt(dyt),

=
∑

yt+1∈Y1

Πỹt
tyt+1 = µ1(C1(Y1)|ỹt),

where the first equality comes from using C1(Y1) = Y∞ × Y1, the second from using the Fubini

theorem (we consider σ-finite measure spaces and (ỹt, yt+1) ∈ Y∞ × Y1 7→ Πỹt
tyt+1δỹt(dyt) is

integrable), the third the property of Dirac mass, and the fourth the definition of µ1.

For k ≥ 2, we have:
ˆ

yt+1∈Ck(Yk)
Πỹt

tyt+1
t+1
δỹt(L(dyt+1)) (58)

=
ˆ

(yt−k+1,y(t−k+2):t+1)∈Y∞×Yk

Πỹt
tyt+11y(t−k+2):t=ỹt

(t−k+2):t
δL(k−1)(ỹt)(dy

t−k+1), (59)

where L(k−1)(·) is k-iterate of the shift operator L: L(k−1)(ỹt) = (. . . , ỹt
t−k, ỹ

t
t−k+1). To write

equality (58), we have used that Ck(Yk) = Y∞ × Yk and the fact that δỹt(Yk−1 × C) =∑
y(t−k+2):t∈Yk−1

1y(t−k+2):t=ỹt
(t−k+2):t

δL(k−1)(ỹt)(C) for all C ∈ C0 and Yk−1 ⊂ Yk−1. Hence the

two measures coincide on C0 and are also σ- finite. Using Fubini and the property of a Dirac
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mass, we obtain from (58):
ˆ

yt+1∈Ck(Yk)
Πỹt

tyt+1
t+1
δỹt(L(dyt+1)) =

∑
y(t−k+2):t+1∈Yk

Πỹt
tyt+11y(t−k+2):t=ỹt

(t−k+2):t
,

= µ1(Ck(Yk)|ỹt),

where the last equality comes from the definition of µ1. This concludes the proof.

A.3 Proof of Equality 14

We consider an agent whose individual preferences are represented by a utility function denoted

by V : Y∞ → R. The allocation is subsumed. Let yt ∈ Y∞. The representation result of equation

(13) becomes, after splitting the sum for s = 0 and s ≥ 1:

V (yt) = U(yt) + β
∞∑

s=1

ˆ
yt+s∈Y∞

βs−1U(yt+s)µs(dyt+s|yt). (60)

Using the definition of µs given in Section 4.1 and Bayes rule, we have, for all s ≥ 1:

µs(dyt+s|yt) =
ˆ

yt+1∈Y∞
µs−1(dyt+s|yt+1)µ1(dyt+1|yt). (61)

In words, it means that the probability of transitioning from yt to yt+s in s periods is equal to

the product of the probabilities of transitioning from yt to yt+1 (in 1 period) and from yt+1 to

yt+s (in s− 1 periods), summed over all possible histories yt+1. Using (61), the expression of V

in (60) becomes:

V (yt) = U(yt) + β
∞∑

s=1

ˆ
yt+s∈Y∞

βs−1U(yt+s)

×
ˆ

yt+1∈Y∞
µs−1(dyt+s|yt+1)µ1(dyt+1|yt).

Since all functions are integrable, we can use the Fubini theorem twice, to swap the order of

integrals and then of the sum and of the integral on yt+1 ∈ Y∞. We obtain:

V (yt) = U(yt)+ (62)

+β
ˆ

yt+1∈Y∞

{ ∞∑
s=1

ˆ
yt+s∈Y∞

βs−1U(yt+s)µs−1(dyt+s|yt+1)
}
µ1(dyt+1|yt).
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The term between curly braces is V (yt+1) using (13) applied to t + 1. The previous equality

becomes:

V (yt) = U(yt) + β

ˆ
yt+1∈Y∞

V (yt+1)µ1(dyt+1|yt).

which gives the representation (14) using the notation Eyt+1
[
V (yt+1)|yt

]
=
´

yt+1∈Y∞ V (yt+1)µ1(dyt+1|yt)

for the conditional expectation.

A.4 Proof of Proposition 1

Using the definition (16), the expression (17) of the SWF becomes:

SWF =
ˆ

yt∈Y∞
ωP (yt)

ˆ
ỹt∈Y∞

V̂ (yt, ỹt)µ(dỹt)µ(dyt),

which can be further simplified using the expression (15) of V̂ :

SWF =
ˆ

yt∈Y∞
ωP (yt)

ˆ
ỹt∈Y∞

∞∑
s=0

ˆ
ŷt+s∈Y∞

βsω̂(yt, ŷt+s)U(ŷt+s)µs(dŷt+s|ỹt)µ(dỹt)µ(dyt),

=
ˆ

yt∈Y∞
ωP (yt)

∞∑
s=0

ˆ
ỹt∈Y∞

ˆ
ŷt+s∈Y∞

βsω̂(yt, ŷt+s)U(ŷt+s)µs(dŷt+s|ỹt)µ(dỹt)µ(dyt).

Since all functions under consideration are positive and measurable and since it is assumed that

SWF < ∞, we can use the Fubini theorem to permute the order of integrals and obtain:

SWF =
∞∑

s=0

ˆ
ŷt+s∈Y∞

βs

[ˆ
yt∈Y∞

ωP (yt)ω̂(yt, ŷt+s)µ(dyt)
]
U(ŷt+s)

×
[ˆ

ỹt∈Y∞
µs(dŷt+s|ỹt)µ(dỹt)

]
.

A straightforward extension of Lemma 4 for µs (for any s ≥ 1) yields:
´

ỹt∈Y∞ µs(dŷt+s|ỹt)µ(dỹt) =

µ(dŷt+s). Using the definition (19) of the weights ω, we deduce:

SWF =
∞∑

s=0

ˆ
ŷt+s∈Y∞

βsω(ŷt+s)U(ŷt+s)µ(dŷt+s),

which proves Proposition 1.

As a final remark, observe that by splitting the sum over s into s = 0 and a sum for s ≥ 1, we

also obtain the following expression for SWF : SWF =
´

yt∈Y∞ ω(yt)U(yt, A)µ(dyt) + β SWF .

A.5 Proof of Proposition 2

We recall the expression of the SWF when the allocation is explicit:
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SWF (A) =
∞∑

t=0
βt

ˆ
yt∈Y∞

ω(yt)U(yt, A)µ(dyt).

Assume that the weights are non-negative and consider two allocations A and A’ such that A

element-wise dominates A′. We thus have U(yt, A) ≥ U(yt, A′) for all yt. The non-negativity of

weights implies that: βtω(yt)U(yt, A) ≥ βtω(yt)U(yt, A′) for all yt, which after integration and

sum yields SWF (A) ≥ SWF (A′).

Let us assume that SWF (A) ≥ SWF (A′) for any pair of allocations A and A’ such that A

element-wise dominates A′. Let us assume that the weights are strictly negative on a subset

X ⊂ Y∞ of positive measure. We consider an allocation A′. We construct the allocation A

such that A and A′ coincide on Y∞ \ X and A strictly dominates A′ on X . We thus have

U(yt, A) = U(yt, A′) for all yt ∈ Y∞ \ X and U(yt, A) > U(yt, A′) for all yt ∈ X : A element-wise

dominates A′. We thus deduce that:
ˆ

yt∈Y∞
ω(yt)(U(yt, A) − U(yt, A′))µ(dyt) =

ˆ
yt∈Y∞\X

ω(yt)(U(yt, A) − U(yt, A′))µ(yt)

+
ˆ

yt∈X
ω(yt)(U(yt, A) − U(yt, A′))µ(yt),

=
ˆ

yt∈X
ω(yt)(U(yt, A) − U(yt, A′))µ(yt),

< 0,

where the first equality is a split of the integral over two disjoint sets, the second comes from

U(yt, A) = U(yt, A′) on Y∞ \ X , and the third from U(yt, A) > U(yt, A′) and ω(yt) < 0 on X .

Summing the previous discounted inequality implies SWF (A) < SWF (A′), which is a

contradiction. We must thus have positive weights. This concludes the proof.

A.6 Proof of equation (22) in Definition 3

The program in Definition 3 is:

(ω̃ỹy)ỹ,y =argmin(ω̂ỹy)ỹ,y

∑
(y,ỹ)∈Y∞2

πỹ

(
ω̂ỹy − 1y=ỹ

ωP,yπy

)2

,

s.t. ωy =
∑

ỹ∈Y∞
πỹωP,ỹω̂ỹy (y ∈ Y). (63)
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We denote by 2λy the Lagrange multiplier to the constraint of equation (63) for y ∈ Y. We

obtain the following Lagrangian:

L = 1
2

∑
(y,ỹ)∈Y∞2

πỹ

(
ω̂ỹy − 1y=ỹ

ωP,yπy

)2

−
∑
y∈Y

λy

 ∑
ỹ∈Y∞

πỹωP,ỹω̂ỹy − ωy

 .
Computing the derivative with respect to ω̂ỹy yields the following FOC:

ω̂ỹy = 1y=ỹ

ωP,yπy
+ λyωP,ỹ.

Using the constraint of equation (63), we deduce:

λy = ωP,ỹ∑
ỹ∈Y∞ πỹ(ωP,ỹ)2 (ωy − 1),

which finally implies equation (A.6).

B Competitive equilibrium

We provide a formal definition of a competitive equilibrium.

Definition 4 (Competitive equilibrium) A sequential competitive equilibrium is a collection

of individual allocations (ci,t, li,t, ai,t, νi,t)t≥0,i∈I , of aggregate quantities (Kt, Lt, Yt)t≥0, of price

processes (wt, rt, w̃t, r̃t)t≥0, and of fiscal policies (τ c
t , τ

K
t , τt, κt, Bt)t≥0, such that, for initial con-

ditions and initial values of capital stock and public debt verifying K−1 +B−1 =
´

i ai,−1ℓ(di), we

have:

1. given prices, the functions (ci,t, li,t, ai,t, νi,t)t≥0,i∈I solve the agent’s optimization program

in equations (30)–(32);

2. financial, labor, and goods markets clear at all dates: for any t ≥ 0, equation (35) holds;

3. the government budget is balanced at all dates: equation (28) holds for all t ≥ 0;

4. factor prices (wt, rt, w̃t, r̃t)t≥0 are consistent with condition (24) and post-tax definitions

(27).

A steady-state competitive equilibrium is a competitive equilibrium for which the joint

distribution of agents’ decisions (c, l, a, ν), aggregate quantities K,L, Y , prices w, r, w̃, r̃, and

fiscal policy (τ c, τK , τ, κ,B) are time-invariant.
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C The Ramsey program 3

C.1 Reformulating the Ramsey program

We now reformulate the Ramsey problem. We define the following variables:

ãi,t := ai,t

1 + τ c
t

, (64)

Wt := wt

1 + τ c
t

, (65)

Rt :=
(1 + rt)(1 + τ c

t−1)
1 + τ c

t

, (66)

which represents the asset choices in (64), the wage rate in (65), and the interest rate in (66).

With this notation, the agent’s budget and credit constraints become:

ci,t + ãi,t = Wt(yi,tli,t)1−τt +Rtãi,t−1, (67)

ãi,t ≥ − a

1 + τ c
t

:= −ã. (68)

Since taxes and prices are considered as given by agents, we can equivalently state their opti-

mization program using the notation (64)–(66) and the constraints (67) and (68), rather than

the original notation and the constraints (31) and (32). This modifies Euler equations (33)–(34)

as follows:

u′(ci,t) = βEt

[
Rt+1u

′(ci,t+1)
]

+ νi,t,

v′(li,t) = (1 − τt)Wtyi,t(yi,tli,t)−τtu′(ci,t).

We now turn to the governmental budget constraint. We further define:

B̃t := Bt

(1 + τ c
t ) , (69)

Ãt := At

1 + τ c
t

, (70)

and

B̂t := (1 + τ c
t )B̃t − τ c

t Ãt. (71)

With these new definitions, the financial market equilibrium given by (43) holds, as we have

Ãt =
´

i ã(i)l(di).
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Using the government budget constraint defined in (28), we have:

Gt + (1 + rt)Bt−1 + wt

ˆ
i
(yi,tli,t)1−τtℓ(di) + rtKt−1 = τ c

t Ct + F (Kt−1, Lt, st) +Bt.

Using the resource constraint Ct +Gt +Kt = F (Kt−1, Lt, st) +Kt−1, we obtain:

Gt + (1 + rt)Bt−1 + wt

ˆ
i
(yi,tli,t)1−τtℓ(di) + rtKt−1 =

τ c
t (F (Kt−1, Lt, st) −Gt − (Kt −Kt−1)) + F (Kt−1, Lt, st) +Bt.

Divide both sides of the equation above by (1 + τ c
t ) and obtain:

Gt + 1 + rt

1 + τ c
t

Bt−1 + wt

1 + τ c
t

ˆ
i
(yi,tli,t)1−τtℓ(di) + rt

1 + τ c
t

Kt−1 =

− τ c
t

1 + τ c
t

(Kt −Kt−1) + F (Kt−1, Lt, st) + Bt

1 + τ c
t

.

Using the definitions (65), (66), and (69):

Gt +RtB̃t−1 +Wt

ˆ
i
(yi,tli,t)1−τtℓ(di) + rt

1 + τ c
t

Kt−1 = − τ c
t

1 + τ c
t

(Kt −Kt−1) + F (Kt−1, Lt, st) + B̃t.

We now substitute the expression of Kt and Kt−1. From (69) and (70), we have Kt−1 =

At−1 −Bt−1 = (1 + τ c
t−1)(Ãt−1 − B̃t−1) and:

Gt +RtB̃t−1 +Wt

ˆ
i
(yi,tli,t)1−τtℓ(di) +

rt(1 + τ c
t−1)

1 + τ c
t

(Ãt−1 − B̃t−1) =

τ c
t (1 + τ c

t−1)
1 + τ c

t

(Ãt−1 − B̃t−1) + F (Kt−1, Lt, st) − τ c
t (Ãt − B̃t) + B̃t.

Observe from (66) and (71) that
rt(1 + τ c

t−1)
1 + τ c

t

= Rt −
1 + τ c

t−1
1 + τ c

t

and −τ c
t (Ãt − B̃t) + B̃t = B̂t. This

yields:

Gt +RtB̃t−1 +Wt

ˆ
i
(yi,tli,t)1−τtℓ(di) + (Rt − (1 + τ c

t−1))(Ãt−1 − B̃t−1) =

F (Kt−1, Lt, st) + B̂t.

Finally, using (71) in period t− 1 (i.e., B̂t−1 = (1 + τ c
t−1)B̃t−1 − τ c

t−1Ãt−1) we get:

Gt +Wt

ˆ
i
(yi,tli,t)1−τtℓ(di) + (Rt − 1)Ãt−1 + B̂t−1 =

F (Kt−1, Lt, st) + B̂t.

Since the public debt can be freely chosen by the planner, it is equivalent for the planner to

choose B̂t rather than Bt.
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The reformulated Ramsey program. We reformulate the Ramsey program (72)–(78) using

the variables ãi,t, Wt, Rt, Ãt, B̂t introduced in (64)–(66) and (70)–(71). The program can be

expressed in post-tax prices Rt and Wt – taxes and pre-tax factor prices can be deduced from

the allocation and the post-tax price definitions. The following proposition summarizes the

reformulation of the Ramsey program.

Proposition 3 The Ramsey program (72)–(78) can be rewritten as:

max
(Wt,Rt,τt,B̂t,Ãt,Kt,Lt,(ci,t,li,t,ãi,t,νi,t)i)t≥0

SWF0, (72)

G+Wt

ˆ
i
(yi,tli,t)1−τtℓ(di) + (Rt − 1)Ãt−1 + B̂t−1 = F (Kt−1, Lt, st) + B̂t, (73)

for all i ∈ I: ci,t + ãi,t = Wt(yi,tli,t)1−τt +Rtãi,t−1, (74)

ãi,t ≥ −˜̄a, νi,t(ãi,t + ˜̄a) = 0, νi,t ≥ 0, (75)

u′(ci,t) = βEt

[
Rt+1u

′(ci,t+1)
]

+ νi,t, (76)

v′(li,t) = (1 − τt)Wtyi,t(yi,tli,t)−τtu′(ci,t), (77)

Kt + B̂t = Ãt =
ˆ

i
ãi,tℓ(di), Lt =

ˆ
i
yi,tli,tℓ(di). (78)

C.2 The Lagrangian and the FOCs of the Ramsey program

The Lagrangian associated to the Ramsey program (72)–(78) can be written as:

L = E0

∞∑
t=0

βt

ˆ
i
ωi,t(u(ci,t) − v(li,t))ℓ(di)

− E0

∞∑
t=0

βt

ˆ
i
(λc,i,t −Rtλc,i,t−1)u′(ci,t)ℓ(di)

− E0

∞∑
t=0

βt

ˆ
i
λl,i,t

(
v′(li,t) − (1 − τt)Wtyi,t(yi,tli,t)−τtu′(ci,t)

)
ℓ(di)

− E0

∞∑
t=0

βtµt

(
Gt + (1 − δ)B̂t−1 + (Rt − 1 + δ)

ˆ
i
ãi,t−1ℓ(di) +Wt

ˆ
i
(yi,tli,t)1−τtℓ(di) − Yt − B̂t

)
,

where the value of νit is given by the complementary slackness conditions (75) and (76), and

where we have:

ci,t = −ãi,t +Rtãi,t−1 +Wt(yi,tli,t)1−τt , (79)

Yt =
( ˆ

i
ãi,t−1ℓ(di) − B̂t−1

)α( ˆ
i
yi,tli,tℓ (di)

)1−α
. (80)
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As a consequence, the instruments are: ãi,t, li,t, Wt, Rt, τt, and B̂t. Using the two previous

equations to substitute ci,t and Yt, the program of the planner is:

max
(Wt,Rt,τt,B̂t,(li,t,ãi,t)i)t≥0

L.

We now provide the first-order conditions of the planner, and we present an alternative interpre-

tation of the Lagrangian in the next section.

FOC with respect to public debt B̂t.

µt = βEt [(1 + r̃t+1)µt+1] . (81)

FOC with respect to savings choices ãi,t. We define the marginal social value of liquidity

for agent i at date t as:

ψi,t := ωi,tu
′(ci,t) −

(
λc,i,t −Rtλc,i,t−1 − λl,i,t(1 − τt)Wt(yi,t)1−τt(li,t)−τt

)
u′′(ci,t), (82)

and ψ̂i,t := ψi,t − µt as the marginal social value of liquidity net of the cost for the planner’s

resources. We obtain using (81):

ψ̂i,t = βEt

[
Rt+1ψ̂i,t+1

]
. (83)

FOC with respect to labor supply li,t. We define:

ψl,i,t := ωi,tv
′(li,t) + λl,i,tv

′′(li,t).

The FOC with respect to labor supply li,t is:

ψl,i,t = (1 − τt)Wt(yi,t)1−τt(li,t)−τtψ̂i,t + µtFL,tyi,t − (1 − τt)Wt(yi,t)1−τt(li,t)−τtλl,i,tτt
u′(ci,t)
li,t

.

FOC with respect to the wage rate Wt.

0 =
ˆ

j
(yj,tlj,t)1−τt

(
ψ̂j,t + λl,j,t(1 − τt)u′(cj,t)/lj,t

)
ℓ(dj).

FOC with respect to the interest rate Rt.

0 =
ˆ

j
(ψ̂j,tã

j
t−1 + λc,j,t−1u

′(cj,t))ℓ(dj). (84)
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FOC with respect to progressivity τt.

0 =
ˆ

j
(yj,tlj,t)1−τt(ψ̂j,t + λl,j,t(1 − τt)(u′(cj,t)/lj,t)) ln(yj,tlj,t)ℓ(dj)

+
ˆ

j
λl,j,t(yj,tlj,t)1−τt(u′(cj,t)/lj,t)ℓ(dj).

C.3 Expression of the Lagrangian using a public finance representation

The Lagrangian can be written as:

L = E0

∞∑
t=0

βt (Wt + µtBt) ,

with:

Wt :=
ˆ

i

(
ωi,t(u(ci,t) − v(li,t)) − (λc,i,t −Rtλc,i,t−1)u′(ci,t)

−λl,i,t

(
v′(li,t) − (1 − τt)Wtyi,t(yi,tli,t)−τtu′(ci,t)

))
ℓ(di),

Bt := Yt − B̂t −Gt − (1 − δ)B̂t−1 − (Rt − 1 + δ)
ˆ

i
ãi,t−1ℓ(di) −Wt

ˆ
i
(yi,tli,t)1−τtℓ(di).

The quantity Bt is the budget constraint of the government, whereas Wt is the aggregate welfare

taking into account the possible general equilibrium effects generated by each agent’s choice, and

captured by individual Lagrange multipliers λc,i,t and λl,i,t. Note that if these multipliers were 0,

then Wt would only be the weighted welfare.

Considering an instrument Ik in period k (Ik can be public debt, interest rate labor tax or

its progressivity), the FOC of the Lagrangian with respect to Ik implies:

E0

∞∑
t=0

βtµt
dBt

dIk
+ E0

∞∑
t=0

βt

ˆ
∂Wt

∂Ik
ℓ(di) = −E0

∞∑
t=0

βt

ˆ
∂Wt

∂ci,t

∂ci,t

∂Ik
ℓ(di). (85)

Since Wt, Rt, τt only affect the current value of welfare and budget constraint (for It ∈ {Wt, Rt, τt},
∂Wt
∂Ik

= ∂Bt
∂Ik

= 0 if k ̸= t), we have for any It ∈ {Wt, Rt, τt}:

µt =
ˆ
∂Wt

∂ci,t

−∂ci,t

∂It

dBt
dIt

+ 1
µt

∂Wt
∂It

ℓ(di). (86)

It is then easy to compute the partial derivatives to check that we obtain the same expressions as

in Section C.2. For instance, we have ∂Wt
∂ci,t

= ψi,t and when the fiscal instrument is the post-tax

rate Rt: dBt
dRt

= −
´

i ãi,t−1ℓ(di), ∂Wt
∂Rt

=
´

iRtλc,i,t−1u
′(ci,t), and ∂ci,t

∂Rt
= ãi,t−1. Then, (86) becomes:

µt =
ˆ
ψi,t

−ãi,t−1

−
´

i ãi,t−1ℓ(di) + 1
µt

´
iRtλc,i,t−1u′(ci,t)

ℓ(di),
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which can be written as
´

(ψi,t − µt)ãi,t−1ℓ(di) +
´

iRtλc,i,t−1u
′(ci,t) = 0, which is the FOC (84)

with ψ̂i,t = ψi,t − µt. The same derivations can be obtained for Rt, τt.

The instrument B̂t is a fiscal instrument that affects current and future budget constraints

but not welfare: ∂Wt

∂B̂k
= 0, for all k and ∂Bt

∂B̂t
= −1, ∂Bt+1

∂B̂t
= 1 + r̃t+1, and ∂Bτ

∂B̂t
= 0 if τ /∈

{t, t+ 1}. As a consequence, the FOC (85) simplifies into E0[βtµt
dBt

dB̂t
+ βt+1µt+1

dBt+1
dB̂t

] = 0, or

−µt + βEt[µt+1(1 + r̃t+1)] = 0, which is FOC (81).

D Truncating the model and identification of Pareto Weights

D.1 The truncated model

The key step of the aggregation consists of assigning the same wealth and allocation to all agents

sharing the same idiosyncratic history over the recent past. The recent past is characterized

by a number of periods, called the truncation length and denoted N ; it is a parameter of

the model. This N -period history will be referred to as a truncated history. For a history

yt = {. . . , yt
t−N , y

t
t−N+1, . . . , y

t
t−1, y

t
t}, this corresponds to the N -length vector denoted yN :=

{yt
t−N , y

t
t−N+1, . . . , y

t
t−1, y

t
t}. To sum up, we can represent the truncated history of an agent i

whose idiosyncratic history is yt as:

yt = {. . . , yt
t−N−2, y

t
t−N−1, y

t
t−N︸ ︷︷ ︸

ξ
yN

, yt
t−N+1, . . . , y

t
t−1, y

t
t︸ ︷︷ ︸

=yN

},

where the parameter ξyN captures the residual heterogeneity for the truncated history yN , and

yt
t−k represents the idiosyncratic variable (at date t) k periods in the past. The method to

compute the set of parameters (ξyN )yN will be discussed further below. In what follows, we will

discuss the various elements needed to apply the aggregation procedure.

First, we need to compute the measure of agents with the same history yN . An agent with

history ỹN at t− 1 will have a different truncated history in period t depending on the realization

of the idiosyncratic variable at date t. The probability to transit from truncated history ỹN to

truncated history yN will be denoted by ΠỹN yN (with
∑

yN Y∞N ΠỹN yN = 1) and can be computed

from the transition probabilities for the productivity process as:

ΠỹN yN = 1yN ⪰ỹN ΠỹN
0 yN

0
≥ 0,

where 1yN ⪰ỹN is equal to 1 if yN is a possible continuation of ỹN , and 0 otherwise. With those
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elements, we can compute the share of agents with truncated history yN as St,yN . This element

will be:

St,yN =
∑

ỹN ∈YN

St−1,ỹN ΠỹN yN , (87)

where the initial shares (S−1,yN )yN ∈YN are given with
∑

yN ∈YN S−1,yN = 1.

The model aggregation then assigns to each truncated history the average choices (whether

for consumption, savings, or labor supply) of the group of agents sharing the same truncated

history. Let us consider a generic variable denoted by Xt(yt, st), and denote by Xt,yN the average

quantity of X assigned to truncated history yN . Formally:

Xt,yN = 1
St,yN

∑
yt∈Yt+1|(yt

t−N+1,...,yt
t−1,yt

t)=yN

Xt(yt,st)µt(yt), (88)

where we remind that µt(yt) is the measure of agents with history yt. Definition (88) can be

applied to consumption, savings, labor supply, and the credit-constraint Lagrange multiplier.

This leads to the quantities ct,yN , ãt,yN , lt,yN , and νt,yN , respectively. Note that applying (88) to

beginning-of-period wealth involves accounting for the fact that agents with truncated history yN

at date t may come from various truncated histories at t− 1. Specifically, this variable consists

of the wealth of all agents with history yN in period t but with any other possible history in

t− 1. Formally, the beginning-of-period wealth ˜̃at,yN for truncated history yN is:

˜̃at,yN =
∑

ỹN ∈YN

St−1,ỹN

St,yN

Πt,ỹN yN ãt−1,ỹN . (89)

We now define the various “ξs”. First, we define ξu,0
yN as:

∑
yt∈Yt+1|(yt

t−N+1,...,yt
t−1,yt

t)=yN

u(ct(yt)) = ξu,0
yN u(

∑
yt∈Yt+1|(yt

t−N+1,...,yt
t−1,yt

t)=yN

ct(yt)),

or compactly as: ∑
yt

i∈Yt+1|yt,N
i =yN

u(ci,t) = ξu,0
yN u(ct,yN ). (90)

The quantity ξu,0
yN reflects that aggregating utility levels is not equal to the utility of aggregated

consumption. This comes from a combination of two reasons. First, there is heterogeneity of

consumption among the population of agents having truncated history yN , due to their history

prior to date t−N . Second, the utility function is not affine in general.
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The same procedure applied to the other variables for the Ramsey problem (72)–(78) yields:

∑
yt

i∈Yt+1|yt,N
i =yN

v(li,t) := ξv,0
yN v(lt,yN ), (91)

∑
yt

i∈Yt+1|yt,N
i =yN

u′(ci,t) := ξu,1
yN u

′(ct,yN ), (92)

∑
yt

i∈Yt+1|yt,N
i =yN

(yi,tli,t)1−τt := ξy
yN (yN

0 lt,yN )1−τt . (93)

We can now proceed with the aggregation of the full-fledged model. First, the aggregation of

individual budget constraints (67) yields:

ct,yN + ãt,yN = Wtξ
y
yN (lt,yN yN

0 )1−τt +Rt˜̃at,yN , for yN ∈ Y∞N . (94)

The aggregation of Euler equations for consumption (76) and labor (77) yields:

ξu,E
yN u′(ct,yN ) = βEt

[
Rt+1

∑
ỹN ∈Y∞N

Πt+1,yN ỹN ξ
u,E
ỹN u′(ct+1,ỹN )

]
+ νt,yN , (95)

ξv,1
yN v

′(lt,yN ) := (1 − τt)Wtξ
y
yN (lt,yN yN

0 )1−τtξu,1
yN (u′(ct,yN )/lt,yN ), (96)

where the coefficients (ξu,E
yN )yN for the consumption Euler equations ensure that the aggregate

Euler equations yield Euler equations with aggregate consumption levels. In other words, the

(ξu,E
yN )yN are determined such that the aggregated consumption levels (for truncated histories)

satisfy the consumption Euler equation (95). These coefficients are necessary because Euler

equations involve non-linear marginal utilities. The same idea applies to the coefficients (ξv,1
yN )yN

for the FOC on labor.

Finally, the market clearing conditions can be expressed as:

Kt + B̂t =
∑

yN ∈YN

St,yN ãt,yN , Lt =
∑

yN ∈YN

St,yN yyN lt,yN . (97)

Equations (94)–(97) exactly characterize the dynamics of the aggregated variables ct,yN , ãt,yN ,

lt,yN , and νt,yN , as well as aggregate quantities Kt, B̂t, and Lt.

Steady state and computation of the ξs. Steady-state allocations allow us to compute the

parameters ξs as follows. We compute the policy functions and wealth distribution of the Bewley

model and identify the set of credit-constrained histories, denoted C. Aggregation equations (88)

and (89) can then be used to aggregate (steady-state) allocations cyN , ãyN , lyN , and νyN . We

then invert the consumption Euler equations (95) to deduce the preference parameters (ξu,E
yN )yN .
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The other ξs are computed explicitly by equations (90), (91), (92), (93), and (96).

The truncated model in the presence of aggregate shocks. We state two further

assumptions that enable us to use the truncation method in the presence of aggregate shocks,

resulting in the so-called truncated model.

Assumption B We make the following two assumptions.

1. The preference parameters (ξyN )yN remain constant and equal to their steady-state values.

2. The set of credit-constrained histories, denoted by C ⊂ Y∞N , is time-invariant.

Two properties are finally worth mentioning. First, a straightforward consequence of the

construction of the ξs is that the steady-state allocations of the initial and truncated models are

identical. Second, as the truncation length N becomes increasingly long, truncated allocations

(in the presence of aggregate shocks) can be shown to converge to those of the full-fledged

equilibrium. Section 6 shows that from a quantitative standpoint, the ξs efficiently capture the

heterogeneity within truncated histories, even when the truncation length remains limited.

D.2 Ramsey program

Program formulation. The finite state-space representation of the truncated model allows us

to solve for the Ramsey program in the presence of aggregate shocks.31 Let (ωy)y∈Y denote the

period weights associated with each productivity level. The Ramsey program in the truncated

economy can be written as follows:

max(
Wt,Rt,w̃t,r̃t,τc

t ,τK
t ,τt,κt,B̂t,Gt,Kt,Lt,(c

t,yN ,l
t,yN ,ã

t,yN ,ν
t,yN )

yN

)
t≥0

W0, (98)

where W0 := E0
[∑∞

t=0 β
t∑

yN ∈YN St,yNωyN (ξu,0
yN u(ct,yN ) − ξv,0

yN v(lt,yN ) + uG(Gt))
]

and subject to

aggregate Euler equations (95) and (96), aggregate budget constraint (94), aggregate market

clearing conditions (97), credit constraints ãt,yN ≥ −ã, as well as the governmental budget

constraint (73), which is already present in the full-fledged Ramsey program.
31Our method involves deriving the FOCs of the truncated model, rather than truncating the FOCs of the

full-fledged Ramsey model. This ensures numerical stability, as the truncated model is "well-defined" for the fiscal
policy under consideration by construction.
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First-order conditions. We define the net social value of liquidity of history yN as in (82):

ψ̂t,yN = ωyN ξ
u,0
yN u

′(ct,yN ) − µt

−
(
λc,t,yN ξ

u,E
yN −Rtλ̃c,t,yN ξ

u,E
yN − λl,t,yN ξ

y
yN (1 − τt)Wt(yN

0 )1−τt l−τt

t,yN ξ
u,1
yN

)
u′′(ct,yN ). (99)

FOC with respect to ãt,yN :

ψ̂t,yN = βEt

[
Rt+1

∑
ỹN ∈Y∞N

Πt,yN ỹN ψ̂t+1,ỹN

]
if νyN = 0 and λc,t,yN = 0 otherwise. (100)

FOC with respect to lt,yN :

ωyN ξ
v,0
yN v

′(lt,yN ) + λl,t,yN ξ
v,1
yN v

′′(lt,yN )
(1 − τt)Wtξ

y
yN (yN

0 )1−τt l−τt

t,yN

= ψ̂t,yN − λl,t,yN τtξ
u,1
yN (u′(ct,yN )/lt,yN )

+ µt(1 − α) Yt

(1 − τt)Wtξ
y
yN (yN

0 )−τt l−τt

t,yNLt
. (101)

FOC with respect to Wt:

∑
yN ∈Y∞N

St,yN ξ
y
yN (lt,yN yyN )1−τt

(
ψ̂t,yN + λl,t,yN (1 − τt)ξu,1

yN (u′(ct,yN )/lt,yN )
)

= 0. (102)

FOC with respect to Rt:

∑
yN ∈Y∞N

St,yN

(
ψ̂t,yN ˜̃at,yN + λ̃c,t,yN ξ

u,E
yN u′(ct,yN )

)
= 0. (103)

FOC with respect to τt:

∑
yN ∈Y∞N

St,yN

(
ψ̂t,yN + λl,t,yN (1 − τt)ξu,1

yN (u′(ct,yN )/lt,yN )
)

ln
(
lt,yN yyN

)
ξy

yN (lt,yN yyN )1−τt

= −
∑

yN ∈Y∞N

St,yNλl,t,yN ξ
y
yN (lt,yN yyN )1−τtξu,1

yN (u′(ct,yN )/lt,yN ). (104)

FOC with respect to B̂t:

µt = βE
[
µt+1

(
1 + α

Yt+1
Kt

− δ

)]
. (105)

We must furthermore have:

λ̃c,t,yN =
∑

ỹN ∈Y∞N

St−1,ỹN

St,yN

Πt,ỹN yNλc,t−1,ỹN , (106)

ãt,yN ≥ 0 and ˜̃at,yN =
∑

ỹN ∈Y∞N

St−1,ỹN

St,yN

Πt,ỹN yN ãt−1,ỹN . (107)
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D.3 Matrix expression

In this section, we provide closed-form formulas for preference multipliers ξs (Section D.1) and

the weights ωs. We start with some notation:

◦ is the Hadamard product, ⊗ is the Kronecker product, × is the usual matrix product.

For any vector V , we denote by diag(V ) the diagonal matrix with V on the diagonal.

The matrix representation consists in stacking together the equations characterizing the

steady state, so as to provide a convenient matrix notation for solving the steady state. Truncated

histories are simply indexed by yN (the precise index does not matter as long as it remains the

same). This also provides an efficient solution to compute the values for the coefficients (ξyN )

and (ωyN ).

D.3.1 A closed-form formula for the ξs

Let S = (SyN )yN be the Ntot-vector of steady-state history sizes (where Ntot is the number of

truncated histories). Similarly, let a, c, l, ν, u′(c), v′(l) u′′(c), v′′(l) be the Ntot-vectors of

end-of-period wealth, consumption, labor supply, Lagrange multipliers, marginal utilities, and

derivatives of the marginal utility, respectively. These vectors are known from the steady-state

equilibrium of the Bewley model. Each element is defined as the truncation of the relevant

variable computed using equation (88). We also define by y = (yN
0 )yN the Ntot-vector of current

productivity levels of truncated histories, and by P the diagonal matrix having 1 on the diagonal

at yN if and only if the history yN is not credit-constrained (i.e., νyN = 0), and 0 otherwise.

Finally, I is the (Ntot ×Ntot)-identity matrix, and Π is the transition matrix across truncated

histories.

Writing (87), (94) and credit constraints at the steady state yield, respectively:

S = ΠS, (108)

S ◦ c+ S ◦ ã = RΠ (S ◦ ã) +WS ◦ ξy ◦ (y ◦ l)1−τ , (109)

(I − P )ã = 0Ntot×1 . (110)

The Euler equation for consumption in (95) becomes:

ξu,E ◦ u′(c) = βRΠ⊤
(
ξu,E ◦ u′(c)

)
+ ν,
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where the transpose matrix Π⊤ implies expectations about next-period histories. Equivalently:

Du′(c)ξ
u,E = βRΠ⊤Du′(c)ξ

u,E + ν,

where Dx stands for the diagonal matrix with the vector x on the diagonal. Finally:

ξu,E =
[(
I − βRΠ⊤

)
Du′(c)

]−1
ν. (111)

From the FOC on labor in (96), we obtain:

ξv,1 = (1 − τ)W (y ◦ l)1−τ ◦ ξy ◦ ξu,1 ◦ u′(c)./(l ◦ v′(l)). (112)

The equations (90)–(93) yield:

ξu,0 =
∑

yN ∈Y∞N u(ci,t)
u(ct,yN ) , ξu,1 =

∑
yN ∈Y∞N u′(ci,t)
u′(ct,yN ) , (113)

ξv,0 =
∑

yN ∈Y∞N v(li,t)
v(lt,yN ) , ξy =

∑
yN ∈Y∞N (yi,tli,t)1−τ(
yN

0 lt,yN

)1−τ . (114)

D.3.2 Matrix expressions for the FOCs

We define the following variables: λ̄l := S ◦ λl, ψ̄ := S ◦ ψ̂, Π̄ := S ◦ Π⊤ ◦ (1/S), ω̄ := S ◦ ω,

λ̄c := S ◦ λc, ξ̃
u,1 := ξu,1./l, ξ̃v,1 := ξv,1./((1 − τ)Wξy ◦ y1−τ ◦ l−τ ), and ξ̃v,0 := ξv,0./((1 −

τ)Wξy ◦ y1−τ ◦ l−τ ). and notice that S ◦ λ̃c = Πλ̄c. The FOCs (99)–(105) become:

ψ̄ = ω̄ ◦ ξu,0 ◦ u′(c) − µS (115)

−
(
λ̄c ◦ ξu,E −RΠλ̄c ◦ ξu,E − (1 − τ)W λ̄l ◦ ξy ◦ (y ◦ l)1−τ ◦ ξ̃u,1

)
◦ u′′(c),

Pψ̄ = βRP Π̄ψ̄, (116)

(I − P )λ̄c = 0, (117)(
ξy ◦ (y ◦ l)1−τ

)⊤
ψ̄ = −(1 − τ)

(
ξy ◦ (y ◦ l)1−τ ◦ ξ̃u,1 ◦ u′(c)

)⊤
λ̄l, (118)

ã⊤ψ̄ = −
(
ξu,E ◦ u′(c)

)⊤
Πλ̄c, (119)

ω̄◦ξ̃v,0◦v′(l) + λ̄l◦ξ̃
v,1◦v′′(l) = ψ̄−τ ξ̃u,1◦u′(c)◦λ̄l + µFLS./((1 − τ)Wξy ◦y−τ◦l−τ ), (120)(

ln(y ◦ l)◦ξy ◦(y ◦ l)1−τ
)⊤
ψ̄ = −

(
(1 + (1 − τ) ln(y◦l))◦ξy ◦(y ◦ l)1−τ◦ξ̃u,1◦u′(c)

)⊤
λ̄l. (121)
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D.3.3 Solving the system

Equation (120) yields:

D
ξ̃

v,1◦v′′(l)+τ ξ̃
u,1◦u′(c)λ̄l = µFLS./((1 − τ)Wξy ◦ y−τ ◦ l−τ ) + ψ̄ −D

ξ̃
v,0◦v′(l)ω̄,

λ̄l = M0ω̄ +M1ψ̄ + µV 0, (122)

with: M0 := −M1Dξ̃
v,0◦v′(l), M1 := D−1

ξ̃
v,1◦v′′(l)+τ ξ̃

u,1◦u′(c)
, and V 0 := FLM1S./((1 − τ)Wξy ◦

y−τ ◦ l−τ ).

Equation (115) then implies:

ψ̄ = M̂0ω̄ + M̂1λ̄c + M̂2λ̄l − µS, (123)

with: M̂0 := Dξu,0◦u′(c), M̂1 := −Dξu,E◦u′′(c)(I −RΠ), M̂2 := (1 − τ)WD
ξy◦(y◦l)1−τ ◦ξ̃u,1◦u′′(c).

We obtain using (123) and (122):

ψ̄ = M3ω̄ +M4λ̄c + µV 1, (124)

whereM2 := I−M̂2M1, M3 := M−1
2 (M̂0+M̂2M0), M4 := M−1

2 M̂1, V 1 := M−1
2 (M̂2V 0−

S).

Furthermore, equations (116), (117), and (124) imply:

λ̄c = M5ω̄ + µV 2, (125)

where R̃5 := −((I − P ) + P (I − βRΠ̄)M4)−1P (I − βRΠ̄), M5 := R̃5M3, and V 2 := R̃5V 1.

Substituting (124) and (125) into (119), we deduce:

µ = −L0ω̄, (126)

where C1 := ˜̃a⊤(V 1 +M4V 2) + (ξu,E ◦ u′(c))⊤ΠV 2 and L0 := (ã⊤(M3 +M4M5) + (ξu,E ◦

u′(c))⊤ΠM5)/C1.

We deduce from (124) and (125):

λ̄c = (M5 − V 2L0)ω̄, (127)

ψ̄ = M6ω̄, (128)
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and from (122):

λ̄l = M̂6ω̄. (129)

We have defined M̂6 := M0 +M1M6 − V 0L0 and M6 := M3 +M4(M5 − V 2L0) − V 1L0.

Constructing the constraints. The constraint of equation (121) becomes after substituting

the expressions (128) of ψ̄ and (129) of λ̄l:

L̃1ω̄ = 0, (130)

where:

L̃1 :=
(
ln(y ◦ l) ◦ ξy ◦ (y ◦ l)1−τ

)⊤
M6

+
(
(1 + (1 − τ) ln(y ◦ l)) ◦ ξy ◦ (y ◦ l)1−τ ◦ ξ̃u,1 ◦ u′(c)

)⊤
M̂6.

The constraint (118) becomes after substituting the expressions (128) of ψ̄ and (129) of λ̄l:

L̃2ω̄ = 0, (131)

where:

L̃2 :=
(
ξy ◦ (y ◦ l)1−τ

)⊤
M6 + (1 − τ)

(
ξy ◦ (y ◦ l)1−τ ◦ ξ̃u,1 ◦ u′(c)

)⊤
M̂6.

The two constraints imposed on the history weights are L̃1ω̄ = 0 and L̃2ω̄ = 0. However, ω̄

is a vector of length Ntot, while we care in Definition 2 about a vector ωY = (ωy)y of length Y .

We define the Ntot × Y -matrix R0 that maps a Y -vector into an Ntot-vector (where 1Sy ∈ RSy is

an Sy-vector of 1):

R0 :=



1Sy1
0 0 0

0 1Sy2
0 0

...
... . . . ...

0 0 . . . SyY


,

and the Ntot × Y -matrix R1 := DSR0 that maps a Y -vector into an Ntot-vector, but where

history sizes have been accounted for. To obtain dimensions compatible with other vectors and

matrices, we define ω = R0ω
Y and ω̄ = R1ω

Y .

In conclusion, the two constraints of Definition 2 on the weights ωY = (ωy)y are:

L1ω
Y = L2ω

Y , (132)
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with L1 = L̃1R1 and L2 = L̃2R1.

E Changes in the fiscal system

To identify the effect of the fiscal system in the indentification of weights, we now assume that

fiscal systems are swapped between the two countries: France adopts the US fiscal system and

vice-versa. Table A.I summarizes the new fiscal system for each country.

TABLE A.I
New fiscal system for the United States and France when the fiscal systems of

the two countries are swapped

United States France

τk 0.35 0.36
τc 0.18 0.05
κ 0.98 0.65
τ 0.23 0.16

B/Y 0.21 0.91

We use our estimation strategy to compute the new SWF weights with the updated fiscal

system of Table A.I. We report in Figure A.I the differences implied by the new fiscal system

compared to the benchmark for some key variables. These variables are SWF weights, utility

level, labor supply, and capital income change. The results are averaged for each productivity

level.

Considering the United States in panel (a), we observe that the change in the fiscal system

increases the weights of low productivity agents and decreases those of high-productivity agents.

This results from low-productitivity agents benefiting from the new fiscal system, as can be

seen from the period utility, which decreases with productivity. We also observe that the new

fiscal system makes both labor and capital income more progressive. Considering France in

panel (b), we first observe the opposite variations. As can be seen from the decreasing utility,

low-productivity agents suffer from the new fiscal system, which contributes to lower the SWF

weights of low-productivity agents. The hump-shaped weights arise because high-productivity

agents benefit from the new fiscal system, which makes the labor and capital incomes less

progressive.
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FIGURE A.I
Difference in weights between the US and French fiscal systems

(a) United States (b) France

F Robustness checks for SWF weights

We now relax two assumptions of our identification strategy: (i) that the weights are determined

exactly by the Ramsey constraints by imposing a parametric functional form; (ii) that the weights

depend only on the current productivity level.

F.1 Non-parametric weights

In the previous exercise we estimated parametric weights, where we imposed a functional

relationship between weights and productivity to obtain an exact identification (see Definition 2).

We consider here a different identification strategy to check the robustness of our results. We now

estimate non-parametric weights, by choosing, among all the weights verifying the constraints,

those with the lowest variance.

More precisely, as explained in Section 4.4 (see equation (132)), the Ramsey FOCs impose two

constraints:
∑

y∈Y Lk,yωy = 0, where Lk,y ∈ R (k = 1, 2 and y ∈ Y). The variance-minimizing

weights are characterized by the vector (ω̂y)y, solving the following program:

(ω̂y)y =argmin(ωy)y

∑
y∈Y

πy(ωy − 1)2, (133)

s.t. 0 =
∑
y∈Y

Lk,yωy for all k = 1, 2, (134)

1 =
∑
y∈Y

πyωy. (135)

Figure A.II plots the non-parametric weights (blue solid lines) along the productivity dimension
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FIGURE A.II
Non-pametric weights (solid line) as a function of productivity levels for the

US and France

(a) United States (b) France

for the agents. We also report the parametric weights discussed in Section 6.2 (black dashed

lines). Both parametric and non-parametric weights are quite close to each other and exhibit

a similar shape. The weights are increasing in the US and have a U-shape in France, with a

high value of weights for low-productivity agents. From this experience, we conclude that the

shape of the weights is robust to the identification strategy, even if the value of weights for

high-productivity agents is not exactly identified in France.

F.2 Weights per truncated history

We relax here the assumption that the SWF weights depend solely on the current productivity

level. We assume that weights possibly depend on the whole truncated history. We thus need to

compute Y N weights instead of Y . These weights are thus strongly under-identified. We use

the same identification strategy as for non-parametric weights in Section F.1. We select the

minimal-variance weights verifying the constraints imposed by the Ramsey program. Formally,

the weights (ω̂yN )yN are determined as follows:

(ω̂yN )yN =argmin(ω
yN )

yN

∑
yN ∈YN

SyN (ωyN − 1)2, (136)

s.t. 0 =
∑

yN ∈YN

L̃k,yNωyN for all k = 1, 2, (137)

1 =
∑

yN ∈YN

SyNωyN , (138)

where L̃1 and L̃2 are defined in (130) and (131).
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In Figure A.III, we plot these history weights for the US in panel (a) and France in panel (b).

We restrict these to histories with a positive mass. To make them comparable with previous

parametric weights, we compute an average weight by summing the weights of truncated histories

that have the same productivity level in the first period, and taking into account the size of each

truncated history. This results in 10 weights, as for initial weights. The results are plotted in

Figure A.IV, where we report the non-parametric Pareto weights as a solid blue line and the

average history weights as a dashed red line (averaged over histories having the same current

productivity level). We can observe that the average history weights (red dashed line) closely

approximate the non-parametric ones (blue line). Despite small differences, the two methods

imply very similar weights.

FIGURE A.III
History weights for the US and France

(a) United States (b) France

Note: Histories are arranged in the ascending order of the first-period productivity level.

FIGURE A.IV
Comparison between non-parametric weights and average history weights for

the US and France

(a) United States (b) France
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